Skip to main content

Advertisement

Log in

Selenate reduction and adsorption in littoral sediments from a hypersaline California lake, the Salton Sea

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The Salton Sea, a hypersaline lake located in Southern California, is a major habitat for migratory waterfowl, including endangered species, recently threatened by selenium toxicity. Selenium is both an essential micronutrient and a contaminant and its speciation and cycling are driven by microbial activity. In the absence of oxygen, microorganisms can couple the oxidation of organic matter with the reduction of soluble selenate and selenite to elemental selenium. In order to better understand and quantify selenium cycling and selenium transfer between water and underlying sediments in the Salton Sea, we measured the maximum potential selenate reduction rates (R max) and selenate adsorption isotherms in sediments collected from seven littoral locations in July 2011. We also measured salinity, organic carbon, nitrogen, and elemental selenium content and the abundance of selenate-reducing prokaryotes at each site. Our results showed a high potential for selenate reduction and limited selenate adsorption in all studied sites. Maximum potential selenate reduction rates were affected by sediment Corg content. We showed that selenate reduction potential of Salton Sea sediments far outweighs current dissolved inputs to the lake. Selenate reduction is thus a likely driver for selenium removal from the lake’s water and selenate retention in littoral sediments of the Salton Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afzal, S., M. Younas & K. Hussain, 1999. Selenium speciation of surface sediments from saline lakes of the Soan-Sakesar Valley Salt-Range, Pakistan. Water Quality Research Journal of Canada 34: 575–588.

    CAS  Google Scholar 

  • Anderson, M., L. Whiteaker, E. Wakefield & C. Amrhein, 2008. Properties and distribution of sediment in the Salton Sea, California: an assessment of predictive models. Hydrobiologia 604: 94–110.

    Article  Google Scholar 

  • Arnal, R., 1961. Limnology, sedimentation, and microorganisms of the Salton Sea, California. Geological Society of America Bulletin 72: 427–478.

    Article  CAS  Google Scholar 

  • Balistrieri, L. & T. Chao, 1987. Selenium adsorption by goethite. American Journal of the Soil Sciences Society 51: 1145–1151.

    Article  CAS  Google Scholar 

  • Balistrieri, L. & T. Chao, 1990. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochimica et Cosmochimica Acta 54: 739–751.

    Article  CAS  Google Scholar 

  • Bar-Yosef, B. & D. Meek, 1987. Selenium sorption by kaolinite and montmorillonite. Soil Science 144: 11–19.

    Article  CAS  Google Scholar 

  • Bowie, G., J. Sanders, G. Riedel, C. Gilmour, D. Breitburg, G. Cutter & D. Porcella, 1996. Assessing selenium cycling and accumulation in aquatic ecosystems. Water, Air and Soil Pollution 90: 93–104.

    Article  CAS  Google Scholar 

  • Catalano, J., Z. Zhang, P. Fenter & M. Bedzyk, 2006. Inner-sphere adsorption geometry of Se (IV) at the hematite (100)-water interface. Journal of Colloid and Interface Science 297: 665–671.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, P., 1999. Selenium – a potential time bomb or just another contaminant? Human and Ecological Risk Assessment 5: 1123–1138.

    Article  CAS  Google Scholar 

  • Chen, Y., L. Li, A. D’Ulivo & N. Belize, 2006. Extraction and determination of elemental selenium in sediments – a comparative study. 577-126-133.

  • Cherry, D. & R. Guthrie, 1977. Toxic metals in surface waters from coal ash. Water Resources Bulletin 13: 1227–1236.

    Article  CAS  Google Scholar 

  • Cohen, M., 2008. Past and Future of the Salton Sea. In Gleick, P. H. (ed.), The World’s Water 2008–2009. Island Press, Covelo, California.

    Google Scholar 

  • Cohen, M. & K. Hyun, 2006. Hazard – The future of the Salton Sea with no restoration project. Pacific Institute, Oakland, California.

    Google Scholar 

  • Czamanski, M., A. Nugraha, P. Pondaven, M. Lasbleiz, A. Masson, N. Caroff, R. Bellail & P. Tréguer, 2011. Carbon, nitrogen and phosphorus elemental stoichiometry in aquacultured and wild-caught fish and consequences for pelagic nutrient dynamics. Marine Biology 158: 2847–2862.

    Article  CAS  Google Scholar 

  • de Abreu, L., G. Santos, N. Curi, L. Guimaraes & J. de Sáe Melo Marques, 2011. Selenium sorption in soils of the Cerrado biome. Revista Brasileira de Ciencia do Solo 35: 1995–2003.

    Google Scholar 

  • Duc, M., G. Lefevre, M. Fedoroff, J. Jeanjean, J. Rouchaud, F. Monteil-Rivera, J. Dumonceau & S. Milonjic, 2003. Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions. Journal of Environmental Radioactivity 70: 61–72.

    Article  PubMed  CAS  Google Scholar 

  • Elrashidi, M. A., D. C. Adriano & W. L. Lindsay, 1989. Solubility, speciation, and transformations of selenium in soils. In Jacobs, L. W. (ed.), Selenium in Agriculture and the Environment. Madison, WI, Soil Science Society of America: 51–63.

    Google Scholar 

  • Furr, A., L. MacDaniels, L. St. John, W. Gutenmann, S. Pakkala & D. Lisk, 1979. Elemental composition of tree nuts. Bulletin of Environmental Contamination and Toxicology 21: 392–396.

  • Haudin, C., P. Renault, V. Hallaire, E. Leclerc-Cessac & S. Staunton, 2007. Effect of aeration on mobility of selenium in columns of aggregated soil as influenced by straw amendment and tomato plant growth. Geoderma 141: 98–110.

    Article  CAS  Google Scholar 

  • Herbel, M. J., J. Switzer Blum, S. Borglin & R. S. Oremland, 2003. Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiol. J. 20: 587–602.

    Article  CAS  Google Scholar 

  • Holdren, C. & A. Montaño, 2002. Chemical and physical characteristics of the Salton Sea, California. Hydrobiologia 473: 1–21.

    Article  CAS  Google Scholar 

  • Hyun, S., P. Burns, I. Murarka & L. Lee, 2006. Selenium (IV) and (VI) sorption by soils surrounding fly ash management facilities. Vadose Zone Journal 5: 1110–1118.

    Article  CAS  Google Scholar 

  • Jehl, J. & R. McKernan, 2002. Biology and migration of eared grebes at the Salton Sea. Hydrobiologia 473: 245–253.

    Article  Google Scholar 

  • Kaiser, J., 1999. Battle over a dying sea. Science 284: 28–30.

    Article  CAS  Google Scholar 

  • Kulp, T. & L. Pratt, 2004. Speciation and weathering of selenium in upper cretaceous chalk and shale from South Dakota and Wyoming, USA. Geochimica et Cosmochimica Acta 68: 3687–3701.

    Article  CAS  Google Scholar 

  • LeBlanc, L. & R. Schroeder, 2008. Transport and distribution of trace elements and other selected inorganic constituents by suspended particulates in the Salton Sea Basin, California, 2001. Hydrobiologia 604: 123–135.

    Article  CAS  Google Scholar 

  • Lemly, A., 2004. Aquatic selenium pollution is a global environmental safety issue. Ecotoxicology and Environmental Safety 59: 44–56.

    Article  PubMed  CAS  Google Scholar 

  • Lenz, M. & P. Lens, 2009. The essential toxin: the changing perception of selenium in environmental sciences. Science Of The Total Environment 407: 3620–3633.

    Article  PubMed  CAS  Google Scholar 

  • Mandal, S., S. Mayadevi & B. Kulkarni, 2009. Adsorption of aqueous selenite [Se(IV)] species on synthetic layered double hydroxide materials. Industrial & Engineering Chemistry Research 48: 7893–7898.

    Article  CAS  Google Scholar 

  • Marti-Cardona, B., T. Steissberg, S. Schladow & S. Hook, 2008. Relating fish kills to upwellings and wind patterns in the Salton Sea. Hydrobiologia 604: 85–95.

    Article  Google Scholar 

  • Martin, A., S. Simpson, S. Fawcett, C. Wiramanaden, I. Pickering, N. Belzile, Y. Chen, J. London & D. Wallschläger, 2011. Biogeochemical mechanisms of selenium exchange between water and sediments in two contrasting lentic environments. Environmental Science and Technology 45: 2605–2612.

    Article  PubMed  CAS  Google Scholar 

  • Martínez, M., J. Giménez, J. de Pablo, M. Rovira & L. Duro, 2006. Sorption of selenium (IV) and selenium (VI) onto magnetite. Applied Surface Science 252: 3767–3773.

    Article  Google Scholar 

  • Marxsen, J. & D. Fiebig, 1993. Use of perfused cores for evaluating extracellular enzyme activity in stream-bed sediments. FEMS Microbiology Ecology 13: 1–12.

    Article  CAS  Google Scholar 

  • Masscheleyn, P., R. Delaune & W. H. Patrick Jr, 1990. Transformations of selenium as affected by sediment oxidation-reduction potential and pH. Environmental Science & Technology 24: 91–96.

    Article  CAS  Google Scholar 

  • Masscheleyn, P., R. Delaune & W. Patrick, 1991. Biogeochemical behavior of selenium in anoxic soils and sediments: an equilibrium thermodynamics approach. Journal of Environmental Science and Health 26: 555–573.

    Google Scholar 

  • Meile, C. & K. Tuncay, 2005. Scale dependence of reaction rates in porous media. Advance in Water Resources 29: 62–71.

    Article  Google Scholar 

  • Moreau, M., J. Surico-Bennett, M. Vicario-Fisher, R. Gerads, R. Gersberg & S. Hurlbert, 2007. Selenium, arsenic, DDT and other contaminants in four fish species in the Salton Sea, California, their temporal trends, and their potential impact on human consumers and wildlife. Lake and Reservoir Management 23: 536–569.

    Article  Google Scholar 

  • Neal, R. & G. Sposito, 1989. Selenate adsorption on alluvial soils. American Journal of the Soil Sciences Society 53: 70–74.

    Article  CAS  Google Scholar 

  • Oremland, R., N. Steinberg, A. Maest, L. Miller & J. Hollibaugh, 1990. Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments. Environmental Science and Technology 24: 1157–1164

    Google Scholar 

  • Oremland, R., N. Steinberg, T. Presser & L. Miller, 1991. In situ bacterial selenate reduction in the agricultural drainage systems of western Nevada. Applied Environmental Microbiology 57: 615–617

  • Pallud, C. & P. Van Cappellen, 2006. Kinetics of microbial sulfate reduction in estuarine sediments. Geochimica et Cosmochimica Acta 70: 1148–1162.

    Article  CAS  Google Scholar 

  • Pezzarosa, B., D. Piccotino & G. Petruzzelli, 1999. Sorption and desorption of selenium in different soils of the Mediterranean area. Communications in Soil Science and Plant Analysis 30: 2669–2679.

    Article  Google Scholar 

  • R Development Core Team, 2005. R: A Language and Environment for Statistical Computing. Vienna, Austria.

  • Redlands Institute, 2002. Salton Sea Atlas. ESRI Press, Redlands, California.

    Google Scholar 

  • Reese, B. & M. Anderson, 2009. Dimethyl sulfide production in a saline eutrophic lake, Salton Sea, California. Limnology and Oceanography 54: 250–261.

    Article  CAS  Google Scholar 

  • Reese, B., M. Anderson & C. Amrhein, 2008. Hydrogen sulfide production and volatilization in a polymictic eutrophic saline lake, Salton Sea, California. Science of the Total Environment 406: 205–218.

    Article  PubMed  CAS  Google Scholar 

  • Rovira, M., J. Giménez, M. Martínez, X. Martínez-Lladó, J. de Pablo, V. Martí & L. Duro, 2008. Sorption of selenium (IV) and selenium (VI) onto natural iron oxides: goethite and hematite. Journal of Hazardous Materials 150: 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Sager, M., 2002. Vertical mobility of selenium, arsenic and sulfur in model soil columns. Die Bodenkultur 53: 83–103.

    CAS  Google Scholar 

  • Saha, U., C. Liu, L. Kozak & P. Huang, 2005. Kinetics of selenite desorption by phosphate from hydroxyaluminum- and hydroxyaluminosilicate-montmorillonite complexes. Geoderma 124: 105–119.

    Article  CAS  Google Scholar 

  • Sampei, Y. & E. Matsumoto, 2001. C/N ratios in a sediment core from Nakaumi Lagoon, southwest Japan – usefulness as an organic source indicator. Geochemistry Journal 35: 189–205.

    CAS  Google Scholar 

  • Schroeder, R., M. Rivera, B. Redfield, J. Densmore, R. Michel, D. Norton, D. Audet, J. Setmire & S. Goodbred, 1993. Physical, chemical and biological data for detailed study of irrigation drainage in the Salton Sea area, California, 1988–1990. United States Geological Survey – Open file report 93-083, Sacramento, California.

  • Schroeder, R. & W. Orem, 2000. Nutrient dynamics in the Salton Basin-implications from calcium, uranium, molybdenum, and selenium. Presentation, Spring 2000, Annual Meeting of American Geophysical Union, Washington, DC.

  • Schroeder, R., W. Orem & J. Kharaka, 2002. Chemical evolution of the Salton Sea, California: nutrient and selenium dynamics. Hydrobiologia 473: 23–45.

    Article  CAS  Google Scholar 

  • Schwabe, K., P. Schuhmann, K. Baerenklau & N. Nergis, 2008. Fundamentals of estimating the net benefits of ecosystem preservation: The case of the Salton Sea. Hydrobiologia 604: 181–195

    Google Scholar 

  • Setmire, J. & R. Schroeder, 1998. Selenium and salinity concerns in the Salton Sea area of California. In Frankenberger, W. & R. Engberg (eds), Environmental Chemistry of Selenium. Marcel Dekker Inc., New York, NY.

  • Sharmasarkar, S. & G. Vance, 2002. Selenite-selenate sorption in surface coal mine environment. Advances in Environmental Research 7: 87–95.

    Article  CAS  Google Scholar 

  • Sposito, G., A. Yang & A. Mackzum, 1991. Selenate reduction in an alluvial soil. Soil Science Society of America Journal 55: 1597–1602.

    Article  CAS  Google Scholar 

  • Steinberg, N. & R. Oremland, 1990. Dissimilatory selenate reduction potentials in a diversity of sediment types. Applied and Environmental Microbiology 56: 3550–3557.

    PubMed  CAS  Google Scholar 

  • Stolz, J. & R. Oremland, 1999. Bacterial respiration of arsenic and selenium. FEMS Microbiology Review 23: 615–627.

    Article  CAS  Google Scholar 

  • Su, C. & D. Suarez, 2000. Selenate and selenite sorption on iron oxides: an infrared and electrophoretic study. American Journal of the Soil Sciences Society 64: 101–111.

    Article  CAS  Google Scholar 

  • Swan, B. K., K. M. Reifel & D. L. Valentine, 2010. Periodic sulfide irruptions impact microbial community structure and diversity in the water column of a hypersaline lake. Aquatic Microbial Ecology 60: 97–108.

    Article  Google Scholar 

  • Tokunaga, T., I. Pickering & G. Brown, 1996. Selenium transformations in ponded sediments. Journal of the American Soil Sciences Society 60: 781–790.

    Article  CAS  Google Scholar 

  • Tokunaga, T., G. Brown, I. Pickering, S. Sutton & S. Bajt, 1997. Selenium redox reactions and transport between ponded waters and sediments. Environmental Science and Technology 31: 1419–1425.

    Article  CAS  Google Scholar 

  • US-DOI (United States of America Department of the Interior), 2007. Reclamation – Managing water in the West: Restoration of the Salton Sea Summary Report. Bureau of Reclamation, Lower Colorado Region, Boulder City, Nevada.

  • US-EPA (United States Environmental Protection Agency), 1987. Ambient Water Quality Criteria for Selenium. U.S. Government Print Office, Washington, DC.

  • US-EPA (United States Environmental Protection Agency), 2010. California’s 2008–2010 Section 303(d) list of impaired waters. In California State Water Resources Control Board, Sacramento, California.

  • Vogl, R. & R. Henry, 2002. Characteristics and contaminants of the Salton Sea sediments. Hydrobiologia 473: 47–54.

    Article  CAS  Google Scholar 

  • Wang, T., J. Wang & J. Burken, 2007. The leaching characteristics of selenium from coal fly ashes. Journal of Environmental Quality 36: 1784–1792.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T., J. Wang, Y. Tang, H. Shi & K. Ladwig, 2009. Leaching characteristics of arsenic and selenium from coal fly ash: role of calcium. Energy and Fuels 23: 2959–2966.

    Article  CAS  Google Scholar 

  • Wolf, D. C. & H. D. Skipper, 1994. Soil sterilization. In Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties. SSSA Book Series, No. 5. Madison, Wisconsin.

  • Woomer, P., 1994. Most probable number counts. In Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties. SSSA Book Series, No. 5. Madison, Wisconsin.

  • Zhang, Y. & J. N. Moore, 1997. Interaction of selenate with a wetland sediment. Applied Geochemistry 12: 685–691

    Google Scholar 

  • Zhang, Y. & J. N. Moore, 1996. Selenium fractionation and speciation in a wetland system. Environmental Science and Technology 30: 2613–2619.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Elodie Passeport for her help with data analysis and helpful discussions and Chandra Richards for her careful revision of the manuscript. The authors also wish to thank Paul Brooks for his extensive assistance with the ICP-OES, as well as William Bradford, Michelle Conklin, Kevin Tsai, Michelle Wong, José Manuel Barreiro, and Daniela Granja for their help in the field and in the lab. This study was financially supported by the Hellman Family Faculty Fund and the EPA (EPA-STAR #91727201-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Pallud.

Additional information

Handling editor: John M. Melack

Rights and permissions

Reprints and permissions

About this article

Cite this article

VillaRomero, J.F., Kausch, M. & Pallud, C. Selenate reduction and adsorption in littoral sediments from a hypersaline California lake, the Salton Sea. Hydrobiologia 709, 129–142 (2013). https://doi.org/10.1007/s10750-013-1443-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1443-7

Keywords

Navigation