Skip to main content

Advertisement

Log in

Properties and distribution of sediment in the Salton Sea, California: an assessment of predictive models

  • SALTON SEA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The Salton Sea is the largest lake, on a surface area basis, in California (939 km2). Although saline (>44 g/l) and shallow (mean depth approximately 9.7 m), it provides valuable habitat for a number of endangered species. The distribution of sediments and their properties within the Salton Sea are thought to have significant influence on benthic ecology and water quality. Sediment properties and their distribution were quantified and compared with predicted distributions using several sediment distribution models. Sediment samples (n = 90) were collected using a regular staggered-start sampling grid and analyzed for water content, organic carbon (C), calcium carbonate, total nitrogen (N), total phosphorus (P), organic phosphorus, and other properties. Water content, total N, and total and organic P concentrations were all highly correlated with organic C content. The organic C concentration showed a non-linear increase with depth, with low organic C contents (typically 1–2%) present in sediments found in depths up to 9 m, followed by a strong increase in organic C at greater depths (to about 12% at 15 m depth). The models of Hakanson, Rowan et al., Blais and Kalff, and Carper and Bachmann yielded very different predicted critical depths for accumulation (10.5–22.8 m) and areas of accumulation (0–49.5%). Hakanson’s dynamic ratio model more reasonably reproduced the observed zone of elevated organic C concentrations in the Salton Sea than either exposure- or slope-based equations. Wave theory calculations suggest that strong winds occurring less than 1% of the time are sufficient to minimize accumulation of organic matter in sediments that lie at depths less than 9 m in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • APHA, 1998. Standard Methods for the Examination of Water and Wastewater (20th Ed.). American Public Health Association, Washington, DC.

    Google Scholar 

  • Arnal, R. E., 1961. Limnology, sedimentation, and microorganisms of the Salton Sea, California. Geological Society of America Bulletin 72: 427–478

    Article  CAS  Google Scholar 

  • Aspila, K. I., H. Agemian & A. S. Y. Chau, 1976. A semi-automated method for determination of inorganic, organic and total phosphate in sediments. Analyst 101: 187–197.

    Article  PubMed  CAS  Google Scholar 

  • Berner, R. A. & J. L. Rao, 1994. Phosphorus in sediments of the Amazon River and estuary: implications for the global flux of phosphorus to the sea. Geochimica Cosmochimica Acta 58: 2333–2339.

    Article  CAS  Google Scholar 

  • Blais, J. M. & J. Kalff, 1995. The influence of lake morphometry on sediment focusing. Limnology and Oceanography 40: 582–588.

    CAS  Google Scholar 

  • Bloesch, J., 1995. Mechanisms, measurement and importance of sediment resuspension in lakes. Marine and Freshwater Research 46: 295–304.

    Google Scholar 

  • California Irrigation Management Information System (CIMIS). 2004. California Dept. of Water Resources. www.cimis.water.gov.

  • Carper, G. L. & R. W. Bachmann, 1984. Wind resuspension of sediments in a prairie lake. Canadian Journal of Fisheries and Aquatic Sciences 41: 1763–1767.

    Google Scholar 

  • Cook, C. B., G. T. Orlob & D. W. Huston, 2002. Simulation of wind-driven circulation in the Salton Sea: implications for indigenous ecosystems. Hydrobiologia 473:59–75.

    Article  Google Scholar 

  • Cyr, H., 1998. Effects of wave disturbance and substrate slope on sediment characteristics in the littoral zone of small lakes. Canadian Journal of Fisheries and Aquatic Sciences 55: 967–976.

    Article  Google Scholar 

  • Danen-Louwerse, J. H., L. Lijklema & M. Coenraats, 1995. Coprecipitation of phosphate with calcium carbonate in Lake Veluwe. Water Research 29: 1781–1785.

    Article  CAS  Google Scholar 

  • Detwiler, P. M., M. F. Coe & D. M. Dexter, 2002. The benthic invertebrates of the Salton Sea: distribution and seasonal dynamics. Hydrobiologia 473: 139–160.

    Article  Google Scholar 

  • Duarte, C. M. & J. Kalff, 1986. Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities. Limnology and Oceanography 31: 1072–1080.

    Google Scholar 

  • Ferrari, R. L. & P. Weghorst, 1997. Salton Sea 1995 Hydrographic GPS Survey. Bureau of Reclamation, Water Resources Services, Technical Service Center, Denver, CO.

    Google Scholar 

  • Förstner, U & G. T. W. Wittmann, 1979. Metal Pollution in the Aquatic Environment. Springer-Verlag, Berlin.

    Google Scholar 

  • Freeman, J. S. & D. L. Rowell, 1981. The adsorption and precipitation of phosphate onto calcite. Journal of Soil Science 32: 75–84.

    Article  CAS  Google Scholar 

  • Gee, G. W. & J. W. Bauder, 1986. Particle-size analysis. In Klute A. (ed.), Methods of Soil Analysis. Part 1. 2nd Ed. Agronomy Monographs 9. ASA and SSSA, Madison, WI: 383–411.

  • Gilbert, R., 1999. Calculated wave base in relation to the observed patterns of sediment distribution in northeastern Lake Ontario. Journal of Great Lakes Research 25: 883–891.

    CAS  Google Scholar 

  • Hakanson, L., 1977. The influence of wind, fetch, and water depth on the distribution of sediments in Lake Vanern, Sweden. Canadian Journal of Earth Sciences 14: 397–412.

    CAS  Google Scholar 

  • Hakanson, L., 1981. On lake bottom dynamics – the energy-topography factor. Canadian Journal of Earth Sciences 18: 899–909.

    Google Scholar 

  • Hakanson, L., 1982. Lake bottom dynamics and morphometry: the dynamic ratio. Water Resources Research 18: 1444–1450.

    Article  Google Scholar 

  • Hakanson, L. & M. Jansson, 1983. Principles of Lake Sedimentology. Springer-Verlag, New York, NY.

    Google Scholar 

  • Hargrave, B. T., 1972. Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limnology and Oceanography 17: 583–596.

    Article  CAS  Google Scholar 

  • Hatcher, K. J. 1986. Sediment Oxygen Demand: Processes, Modeling & Measurement. Institute of Natural Resources, Univ. of Georgia, Athens, GA.

  • Holdren, G. C. & D. E. Armstrong, 1980. Factors affecting phosphorus release from intact lake sediment cores. Environmental Science and Technology. 14: 79–87.

    Article  Google Scholar 

  • Holdren, G. C. & A. Montaño, 2002. Chemical and physical characteristics of the Salton Sea, California. Hydrobiologia 473: 1–21.

    Article  CAS  Google Scholar 

  • Huston, D. W., 2000. Application of a Wind Field Analysis to a Three-Dimensional Hydrodynamic Model of the Salton Sea, California. M.S. Thesis, Univ. of California, Davis.

  • Jones, J. G., 1980. Some differences in the microbiology of profundal and littoral zone sediments. Journal of General Microbiology 117: 285–292.

    Google Scholar 

  • Karickhoff, S. W., D. S. Brown & T. A. Scott, 1979. Sorption of hydrophobic pollutants on natural sediments. Water Research 13: 241–248.

    Article  CAS  Google Scholar 

  • King, I. P. 1993. A finite element model for three-dimensional density stratified flow. Australian Water and Coastal Studies Report, April.

  • Lehman, J. T., 1975. Reconstructing the rate of accumulation of lake sediment: the effect of sediment focusing. Quaternary Research 5: 541–550.

    Article  Google Scholar 

  • Lenhard, G., W. R. Ross & A. duPlooy, 1962. A study of methods for the classification of bottom deposits of natural waters. Hydrobiologia 20: 223–240.

    Article  CAS  Google Scholar 

  • Loeppert, R. H. & D. L. Suarez, 1996. Carbonate and gypsum. In Sparks, D. L. (ed.), Methods of Soil Analysis. Part 3. 3rd Ed. Agronomy Monographs 9. ASA and SSSA. Madison, WI: 437–474.

  • Martin, J. L. & S. C. McCutcheon, 1999. Hydrodynamics and Transport for Water Quality Modeling. Lewis Publ., Boca Raton, FL.

    Google Scholar 

  • Nagid, E. J., D. E. Canfield & M. V. Hoyer, 2001. Wind-induced increases in trophic state characteristics of a large (27 km2), shallow (1.5 m mean depth) Florida lake. Hydrobiologia 455: 97–110.

    Article  CAS  Google Scholar 

  • Nelson, D. W. & L. E. Sommers, 1982. Total carbon, organic carbon, and organic matter. In: Page, A. L., R. H. Miller & D. R. Keeney (eds), Methods of Soil Analysis, Part 2. 2nd ed. Agronomy Monographs 9. ASA and SSSA., Madison, WI: 539–580.

  • Peeters, E. T. H. M., R. Gylstra & J. H. Vos, 2004. Benthic macroinvertebrate community structure in relation to food and environmental variables. Hydrobiologia 519: 103–115.

    Article  Google Scholar 

  • Reddy, K.R., M. M. Fisher & D. Ivanoff, 1996. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake. Journal of Environmental Quality 25: 363–371.

    Article  CAS  Google Scholar 

  • Rowan, D. J., J. Kalff & J. B. Rasmussen, 1992a. Estimating the mud deposition boundary depth in lakes from wave theory. Canadian Journal of Fisheries and Aquatic Sciences 49: 2490–2497.

    Google Scholar 

  • Rowan, D. J., J. Kalff & J. B. Rasmussen, 1992b. Profundal sediment organic content and physical character do not reflect lake trophic status, but rather reflect inorganic sedimentation and exposure. Canadian Journal of Fisheries and Aquatic Sciences 49: 1431–1438.

    Article  CAS  Google Scholar 

  • Rowan, D. J., J. B. Rasmussen & J. Kalff, 1995. Optimal allocation of sampling effort in lake sediment studies. Canadian Journal of Fisheries and Aquatic Sciences 52: 2146–2158.

    Google Scholar 

  • Salton Sea Authority/USBR, 2000. Draft Salton Sea Restoration Project Environmental Impact Statement/Environmental Impact Report. Report prepared for the Salton Sea Authority and U.S. Department of the Interior, Bureau of Reclamation, by Tetra Tech, Inc.

  • Schroeder, R. A., W. H. Orem & Y. K. Kharaka, 2002. Chemical evolution of the Salton Sea, California: nutrient and selenium dynamics. Hydrobiologia 473: 23–45.

    Article  CAS  Google Scholar 

  • Sondegaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading in shallow lakes. Hydrobiologia 506–509: 135–145.

    Article  Google Scholar 

  • Sykes, G., 1937. The Colorado delta. American Geographic Society Special Publicaion 19, pp. 132–133.

  • USBR. 2000. Salton Sea Restoration Project, Draft Alternatives Appraisal Report. Bureau of Reclamation, Lower Colorado Region, Boulder City, NV, 67 pp.

  • USGS. 2006. National Water Information System. Water surface elevation data for the Salton Sea. USGS station #10254005, Salton Sea near Westmorland, CA. http://www.waterdata.usgs.gov.

  • Vogl, R. A. & R. N. Henry, 2002. Characteristics and contaminants of the Salton Sea sediments. Hydrobiologia 473: 47–54.

    Article  CAS  Google Scholar 

  • Watts, J. M., B. K. Swan, M. A. Tiffany & S. H. Hurlbert, 2001. Thermal, mixing, and oxygen regimes of the Salton Sea, California, 1997–1999. Hydrobiologia 466: 159–176.

    Article  CAS  Google Scholar 

  • Yuan, F., B. K. Linsley & S. S. Howe, 2006. Evaluating sedimentary geochemical lake-level tracers in Walker Lake, Nevada, over the last 200 years. Journal of Paleolimnology 36: 37–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by Salton Sea Authority, La Quinta, California. Special thanks to Ed Betty for his assistance in the field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Anderson.

Additional information

Guest editor: S. H. Hurlbert

The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, M.A., Whiteaker, L., Wakefield, E. et al. Properties and distribution of sediment in the Salton Sea, California: an assessment of predictive models. Hydrobiologia 604, 97–110 (2008). https://doi.org/10.1007/s10750-008-9308-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9308-1

Keywords

Navigation