Skip to main content
Log in

The importance of sedimenting organic matter, relative to oxygen and temperature, in structuring lake profundal macroinvertebrate assemblages

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We quantified the role of a main food resource, sedimenting organic matter (SOM), relative to oxygen (DO) and temperature (TEMP) in structuring profundal macroinvertebrate assemblages in boreal lakes. SOM from 26 basins of 11 Finnish lakes was analysed for quantity (sedimentation rates), quality (C:N:P stoichiometry) and origin (carbon stable isotopes, δ13C). Hypolimnetic oxygen and temperature were measured from each site during summer stratification. Partial canonical correspondence analysis (CCA) and partial regression analyses were used to quantify contributions of SOM, DO and TEMP to community composition and three macroinvertebrate metrics. The results suggested a major contribution of SOM in regulating the community composition and total biomass. Oxygen best explained the Shannon diversity, whereas TEMP had largest contribution to the variation of Benthic Quality Index. Community composition was most strongly related to δ13C of SOM. Based on additional δ13C and stoichiometric analyses of chironomid taxa, marked differences were apparent in their utilization of SOM and body stoichiometry; taxa characteristic of oligotrophic conditions exhibited higher C:N ratios and lower C:P and N:P ratios compared to the species typical of eutrophic lakes. The results highlight the role of SOM in regulating benthic communities and the distributions of individual species, particularly in oligotrophic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen, F. O. & H. S. Jensen, 1992. Regeneration of inorganic phosphorus and nitrogen from decomposition of seston in a freshwater sediment. Hydrobiologia 228: 71–81.

    Article  CAS  Google Scholar 

  • Blais, J. M. & J. Kalff, 1995. The influence of lake morphometry on sediment focusing. Limnology and Oceanography 40: 582–588.

    Article  CAS  Google Scholar 

  • Bloesch, J., 2004. Sedimentation and lake sediment formation. In O’Sullivan, P. E. & C. S. Reynolds (eds), The Lakes Handbook. Limnology and Limnetic Ecology. Blackwell Publishing, Malden: 197–229.

    Google Scholar 

  • Bloesch, J. & N. M. Burns, 1980. A critical review of sedimentation trap technique. Schweizerische Zeitschrift für Hydrologie 42: 15–55.

    Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Brinkhurst, R. O., 1974. The Benthos of Lakes. Blackburn Press, Caldwell.

    Google Scholar 

  • Brodersen, K. P. & N. J. Anderson, 2002. Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwater Biology 47: 1137–1157.

    Article  Google Scholar 

  • Brodersen, K. P. & R. Quinlan, 2006. Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quaternary Science Reviews 25: 1995–2012.

    Article  Google Scholar 

  • Brooks, S. J., P. G. Langdon & O. Heiri, 2007. The Identification and Use of Palearctic Chironomidae Larvae in Palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London.

    Google Scholar 

  • Brundin, L., 1951. The relation of O2-microstratification at the mud surface to the ecology of the profundal bottom fauna. Institute of Fresh-water Research, Drottningholm 32: 32–43.

    Google Scholar 

  • Cowell, B. C., C. J. Dawes, W. E. Gardiner & S. E. Scheda, 1987. The influence of whole lake aeration on the limnology of a hypereutrophic lake in central Florida. Hydrobiologia 148: 3–24.

    Article  CAS  Google Scholar 

  • Cranston, P., 1988. Allergens of non-biting midges (Diptera: Chironomidae): a systematic survey of chironomid haemoglobins. Medical and Veterinary Entomology 2: 117–127.

    Article  PubMed  CAS  Google Scholar 

  • Dang, C. K., S. Harrison, M. M. Sturt, P. S. Giller & M. A. Jansen, 2009. Is the elemental composition of stream invertebrates a determinant of tolerance to organic pollution. Journal of the North American Benthological Society 28: 778–784.

    Article  Google Scholar 

  • Dinsmore, W. P., G. J. Scrimgeour & E. E. Prepas, 1999. Empirical relationships between profundal macroinvertebrate biomass and environmental variables in boreal lakes of Alberta, Canada. Freshwater Biology 41: 91–100.

    Article  Google Scholar 

  • Dodds, W. K. & E. B. Welch, 2000. Establishing nutrient criteria in streams. Journal of the North American Benthological Society 19: 186–196.

    Article  Google Scholar 

  • Dunstan, G. A., J. K. Volkman, S. M. Barrett, J.-M. Leroia & S. W. Jeffrey, 1993. Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35: 155–161.

    Article  Google Scholar 

  • Elser, J. J., 2006. Biological stoichiometry: a chemical bridge between ecosystem, ecology and evolutionary biology. American Naturalist 168: 25–35.

    Article  Google Scholar 

  • Elser, J. J., D. R. Dobberfuhl, N. A. MacKay & J. H. Schampel, 2006. Organism size, life history and N:P stoichiometry. BioScience 46: 674–684.

    Article  Google Scholar 

  • European Commission, 2000. Directive 2000/60/EC 2000 Establishing a Framework for Community Action in the Field of Water Policy. Official Journal of the European Communities L 327/1: 1–72.

    Google Scholar 

  • France, R. L., 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress Series 124: 307–312.

    Article  Google Scholar 

  • Fulthorpe, R. & J. Paloheimo, 1985. Hypolimnetic oxygen consumption in small lakes. Canadian Journal of Fisheries and Aquatic Sciences 42: 1493–1500.

    Article  CAS  Google Scholar 

  • Gálvez, J. A., F. X. Niell & L. Lucena, 1991. C:N:P ratio of settling seston in a eutrophic reservoir. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 24: 1390–1395.

    Google Scholar 

  • Garcia-Ruiz, R., G. Parra, F. Guerrero & J. Lucena, 2001. Sedimentation of phosphorus fractions and temporal variation in the C:P ratio in La Concepcion reservoir, southern Spain. New Zealand Journal of Marine and Freshwater Research 35: 711–723.

    Article  CAS  Google Scholar 

  • Goedkoop, W. & R. K. Johnson, 1996. Pelagic-benthic coupling: profundal benthic community response to spring diatom deposition in mesotrophic Lake Erken. Limnology and Oceanography 41: 636–647.

    Article  CAS  Google Scholar 

  • Goedkoop, W., L. Sonesten, H. Markensten & G. Ahlgren, 1998. Fatty acid biomarkers show dietary differences between dominant chironomid taxa in Lake Erken. Freshwater Biology 40: 135–143.

    Article  CAS  Google Scholar 

  • Graf, G., 1989. Benthic–pelagic coupling in a deep-sea benthic community. Nature 341: 437–439.

    Article  Google Scholar 

  • Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis, 2nd ed. Verlag Chemie, Weinheim.

    Google Scholar 

  • Håkanson, L., 1976. A bottom sediment trap for recent sedimentary deposits. Limnology and Oceanography 21: 125–133.

    Article  Google Scholar 

  • Håkanson, L., 1981. A Manual of Lake Morphometry. Springer, Berlin.

    Book  Google Scholar 

  • Håkanson, L. & M. Jansson, 1983. Principles of Lake Sedimentology. Springer, Berlin.

    Book  Google Scholar 

  • Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Article  Google Scholar 

  • Hilton, J., J. Lishman & P. Allen, 1986. The dominant processes of sediment distribution and focusing in a small, eutrophic, monomictic lake. Limnology and Oceanography 31: 125–133.

    Article  Google Scholar 

  • Hudson, J. J. & W. D. Taylor, 2005. Phosphorus sedimentation during stratification in two small lakes. Archiv für Hydrobiologie 162: 309–325.

    Article  CAS  Google Scholar 

  • Huisman, J. & F. J. Weissing, 1995. Competition for nutrients and light in a mixed water column: a theoretical analysis. American Naturalist 146: 536–564.

    Article  Google Scholar 

  • Hynynen, J., A. Palomäki, H. Veijola, J. J. Meriläinen, P. Bagge, P. Manninen, A. Ustinov & S. Bibiceanu, 1999. Planktonic and zoobenthic communities in an oligotrophic, boreal lake inhabited by an endemic and endangered seal population. Boreal Environment Research 4: 145–161.

    CAS  Google Scholar 

  • Int Panis, L., B. Goddeeris & R. F. Verheyen, 1995. The hemoglobin concentration of Chironomus cf. plumosus L. (Diptera: Chironomidae) larvae from two lentic habitats. Aquatic Ecology 29: 1–4.

    Article  Google Scholar 

  • Int Panis, L., B. Goddeeris & R. F. Verheyen, 1996. On the spatial distribution and respiratory environment of benthic macroinvertebrates in ponds. Hydrobiologia 319: 131–136.

    Article  Google Scholar 

  • Jackson, D. A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.

    Article  Google Scholar 

  • Jewell, W. J. & P. L. McCarty, 1971. Aerobic decomposition of algae. Environmental Science & Technology 5: 1023–1031.

    Article  CAS  Google Scholar 

  • Johnson, R. K., 1987. Seasonal variation in diet of Chironomus plumosus (L.) and C. anthracinus Zett. (Diptera: Chironomidae) in mesotrophic Lake Erken. Freshwater Biology 17: 525–532.

    Article  Google Scholar 

  • Johnson, R. K. & T. Wiederholm, 1989. Classification and ordination of profundal macroinvertebrate communities in nutrient poor, oligo-mesohumic lakes in relation to environmental data. Freshwater Biology 21: 375–386.

    Article  Google Scholar 

  • Johnson, R. K. & T. Wiederholm, 1992. Pelagic-benthic coupling – the importance of diatom interannual variability for population oscillations of Monoporeia affinis. Limnology and Oceanography 37: 1596–1607.

    Article  Google Scholar 

  • Johnson, R. K., B. Boström & W. van de Bund, 1989. Interactions between Chironomus plumosus (L.) and the microbial community in surficial sediments of a shallow, eutrophic lake. Limnology and Oceanography 34: 992–1003.

    Article  Google Scholar 

  • Jónasson, P. M., 2004. Benthic invertebrates. In O’Sullivan, P. E. & C. S. Reynolds (eds), The Lakes Handbook. Limnology and Limnetic Ecology. Blackwell Publishing, Malden: 341–416.

    Google Scholar 

  • Jones, R. I. & J. Grey, 2011. Biogenic methane in freshwater food webs. Freshwater Biology 56: 213–229.

    Article  CAS  Google Scholar 

  • Jones, R. I., C. E. Carter, A. Kelly, S. Ward, D. J. Kelly & J. Grey, 2008. Widespread contribution of methane cycle bacteria to the diets of lake profundal chironomid larvae. Ecology 89: 857–864.

    Article  PubMed  Google Scholar 

  • Jyväsjärvi, J., K. T. Tolonen & H. Hämäläinen, 2009. Natural variation of profundal macroinvertebrate communities in boreal lakes is related to lake morphometry: implications for bioassessment. Canadian Journal of Fisheries and Aquatic Sciences 66: 589–601.

    Article  Google Scholar 

  • Jyväsjärvi, J., J. Nyblom & H. Hämäläinen, 2010. Palaeolimnological validation of estimated reference values for a lake profundal macroinvertebrate metric (benthic quality index). Journal of Paleolimnology 44: 253–264.

    Article  Google Scholar 

  • Jyväsjärvi, J., J. Aroviita & H. Hämäläinen, 2012. Performance of profundal macroinvertebrate assessment in boreal lakes depends on lake depth. Fundamental and Applied Limnology 180: 91–100.

    Article  Google Scholar 

  • Kamp-Nielsen, L. & B. T. Hargrave, 1978. Influence of bathymetry on sediment focusing in Lake Esrom. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 20: 714–719.

    Google Scholar 

  • Kansanen, P. H., J. Aho & L. Paasivirta, 1984. Testing the benthic lake type concept based on chironomid associations in some Finnish lakes using multivariate statistical methods. Annales Zoologici Fennici 21: 55–76.

    Google Scholar 

  • Kilham, S. S., 1990. Relationship of phytoplankton and nutrients to stoichiometric measures. In Tilzer, M. M. & C. Serruya (eds), Large Lakes: Ecological Structure and Function. Springer, Berlin: 403–414.

    Chapter  Google Scholar 

  • Lang, C. & P. Hutter, 1982. Structure, diversity and stability of two oligochaete communities according to sedimentary inputs in Lake Geneva (Switzerland). Aquatic Science 43: 265–276.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd ed. Elsevier Science BV, Amsterdam.

    Google Scholar 

  • Levin, L. A. & J. D. Gage, 1998. Relationships between oxygen, organic matter and the diversity of bathyal macrofauna. Deep Sea Research Part II: Topical Studies in Oceanography 45: 129–163.

    Article  CAS  Google Scholar 

  • Likens, G. E. & M. B. Davis, 1975. Post-glacial history of Mirror Lake and its watershed in New Hampshire, U.S.A.: an initial report. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 19: 982–993.

    Google Scholar 

  • Lindegaard, C., 1994. The role of zoobenthos in energy flow in two shallow lakes. Hydrobiologia 275–276: 313–322.

    Article  Google Scholar 

  • Lopez, G. R. & J. S. Levinton, 1987. Ecology of deposit-feeding animals in marine sediments. Quarterly Review of Biology 62: 235–260.

    Article  Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water analysis: some revised methods for limnologists. Scientific Publication No. 36. Freshwater Biological Association, UK

  • Meyers, P. A. & J. L. Teranes, 2001. Sediment organic matter. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments, Physical and Chemical Methods, Vol. 2. Kluwer Academic Publishers, Dordrecht: 239–269.

    Chapter  Google Scholar 

  • Molongoski, J. J. & M. J. Klug, 1980. Quantification and characterization of sedimenting particulate organic matter in a shallow hypereutrophic lake. Freshwater Biology 10: 497–506.

    Article  CAS  Google Scholar 

  • OECD, 1982. Eutrophication of Waters. Monitoring Assessment and Control. Final Report. OECD Cooperative Programme on Monitoring of Inland Waters (Eutrophication Control), Environment Directorate, OECD, Paris.

    Google Scholar 

  • Økland, R. H. & O. Eilertsen, 1994. Canonical correspondence analysis with variation partitioning: some comments and an application. Journal of Vegetation Science 5: 117–126.

    Article  Google Scholar 

  • Oksanen J., R. Kindt, P. Legendre, B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2008. vegan: Community Ecology Package. R package version 1.15-1. http://vegan.r-forge.r-project.org/.

  • Ottosson, F. & O. Abrahamsson, 1998. Presentation and analysis of a model simulating epilimnetic and hypolimnetic temperatures in lakes. Ecological Modelling 110: 233–253.

    Article  CAS  Google Scholar 

  • Peters, R. H., 1983. Ecological Implications of Body Size. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • R Development Core Team, 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org.

  • Rask, M., K.-M. Vuori, H. Hämäläinen, M. Järvinen, S. Hellsten, H. Mykrä, L. Arvola, J. Ruuhijärvi, J. Jyväsjärvi, I. Kolari, M. Olin, E. Salonen & P. Valkeajärvi, 2011. Ecological classification of large lakes in Finland: comparison of classification approaches using multiple quality elements. Hydrobiologia 660: 37–47.

    Article  CAS  Google Scholar 

  • Rasmussen, J. B. & J. Kalff, 1987. Empirical models for zoobenthic biomass in lakes. Canadian Journal of Fisheries and Aquatic Sciences 44: 990–1001.

    Article  Google Scholar 

  • Real, M. & N. Prat, 1992. Factors influencing the distribution of chironomids and oligochaetes in profundal areas of Spanish reservoirs. Aquatic Ecology 26: 405–410.

    Article  Google Scholar 

  • Real, M., M. Rieradevall & N. Prat, 2000. Chironomus species (Diptera: Chironomidae) in the profundal benthos of Spanish reservoirs and lakes: factors affecting distribution patterns. Freshwater Biology 43: 1–18.

    Article  Google Scholar 

  • Saether, O. A., 1979. Chironomid communities as water quality indicators. Holarctic Ecology 2: 65–74.

    Google Scholar 

  • Schielzeth, H., 2010. Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution 1: 103–113.

    Article  Google Scholar 

  • Schindler, D., 1974. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184: 897–899.

    Article  PubMed  CAS  Google Scholar 

  • SFS, 1989. Standard no: 5076. Sampling of the bottom fauna on soft bottoms with an Ekman grab. The Finnish Standards Association, Helsinki.

    Google Scholar 

  • Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois, Chicago.

    Google Scholar 

  • Simola, H. & L. Arvola, 2005. Lakes in northern Europe. In O’Sullivan, P. E. & C. S. Reynolds (eds), The Lakes Handbook. Lake Restoration and Rehabilitation. Blackwell Publishing, Malden: 117–158.

    Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A Practical Handbook of Seawater Analysis, 2nd ed. Fisheries Research Board of Canada, Ottawa.

    Google Scholar 

  • ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advances in Ecological Research 4: 235–282.

    Google Scholar 

  • Thienemann, A., 1922. Die beiden Chironomusarten der Tiefenfauna der norddeutschen Seen. Ein hydrobiologisches Problem. Archiv für Hydrobiologie 13: 609–646.

    Google Scholar 

  • Tilman, D., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton.

    Google Scholar 

  • Veefkind, R. J., 2003. Carbon isotope ratios and composition of fatty acids: Tags and trophic markers of pelagic organisms. PhD Thesis. University of Victoria.

  • Verneaux, V., J. Verneaux, A. Schmitt & J. C. Lambert, 2004. Relationships of macrobenthos with dissolved oxygen and organic matter at the sediment-water interface in ten French lakes. Archiv für Hydrobiologie 160: 247–259.

    Article  CAS  Google Scholar 

  • Vollenweider, R. A., 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Technical Report. OECD.

  • von Wachenfeldt, E. & L. J. Tranvik, 2008. Sedimentation in boreal lakes—the role of flocculation of allochthonous dissolved organic matter in the water column. Ecosystems 11: 803–814.

    Article  CAS  Google Scholar 

  • Vos, J. H., E. T. H. M. Peeters, R. Gylstra, M. H. S. Kraak & W. Admiraal, 2004. Nutritional value of sediments for macroinvertebrate communities in shallow eutrophic waters. Archiv für Hydrobiologie 161: 469–487.

    Article  Google Scholar 

  • Vuorio, K., M. Meili & J. Sarvala, 2006. Taxon-specific variation in the stable isotopic signatures (δ13C and δ15N) of lake phytoplankton. Freshwater Biology 51: 807–822.

    Article  CAS  Google Scholar 

  • Weber, R. E., 1980. Functions of invertebrate hemoglobins with special reference to adaptations to environmental hypoxia. American Zoologist 20: 79–101.

    CAS  Google Scholar 

  • Wetzel, R. G., 2001. Limnology. Lake and River Ecosystems, 3rd ed. Academic Press, London.

    Google Scholar 

  • Wiederholm, T., 1980. Use of benthos in lake monitoring. Journal of the Water Pollution Control Federation 52: 537–547.

    CAS  Google Scholar 

  • Wiederholm, T., 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomologica Scandinavica Supplementum 19: 1–457.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to following people for their assistance in the field or laboratory: Tuula Sinisalo, Helena Jäntti, Virve Kustula, Olli Nousiainen, Pertti Saaristo, Lauri Arvola, Kalevi Salonen, Mika Nieminen and Timo Ruokonen. Special thanks to Oulun Verkkopalloseura and Puijo Tennis Team for those tens of empty tennis ball tubes we needed. Financial support for this study was provided by the Maj and Tor Nessling Foundation, the VALUE Finnish Graduate School and the FUNCDYN program of the European Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussi Jyväsjärvi.

Additional information

Handling editor: B. Oertli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jyväsjärvi, J., Boros, G., Jones, R.I. et al. The importance of sedimenting organic matter, relative to oxygen and temperature, in structuring lake profundal macroinvertebrate assemblages. Hydrobiologia 709, 55–72 (2013). https://doi.org/10.1007/s10750-012-1434-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1434-0

Keywords

Navigation