Skip to main content

Advertisement

Log in

Sedimentation in Boreal Lakes—The Role of Flocculation of Allochthonous Dissolved Organic Matter in the Water Column

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

We quantified sedimentation of organic carbon in 12 Swedish small boreal lakes (<0.48 km2), which ranged in dissolved organic carbon (DOC) from 4.4 to 21.4 mg C l−1. Stable isotope analysis suggests that most of the settling organic matter is of allochthonous origin. Annual sedimentation of allochthonous matter per m2 lake area was correlated to DOC concentration in the water (R 2 = 0.41), and the relationship was improved when sedimentation data were normalized to water depth (R 2 = 0.58). The net efflux of C as CO2 from the water to the atmosphere was likewise correlated to DOC concentration (R 2 = 0.52). The losses of organic carbon from the water column via mineralization to CO2 and via sedimentation were approximately of equal importance throughout the year. Our results imply that DOC is a precursor of the settling matter, resulting in an important pathway in the carbon cycle of boreal lakes. Thus, flocculation of DOC of terrestrial origin and subsequent sedimentation could lead to carbon sequestration by burial in lake sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Algesten G, Sobek S, Bergström A-K, Ågren A, Tranvik LJ, Jansson M. 2003. Role of lakes for organic carbon cycling in the boreal zone. Glob Chang Biol 10:141–7.

    Article  Google Scholar 

  • Baines SB, Pace ML, Karl DM. 1994. Why does the relationship between sinking flux and planktonic primary production differ between lakes and oceans. Limnol Oceanogr 39:213–26.

    Google Scholar 

  • Bloesch J, Uehlinger U. 1990. Epilimnetic carbon flux and turnover of different particle-size classes in Oligo-Mesotrophic Lake Lucerne, Switzerland. Arch Hydrobiol 118:403–19.

    CAS  Google Scholar 

  • Cole JJ, Caraco NF. 1998. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43:647–56.

    CAS  Google Scholar 

  • Cole JJ, Caraco NF, Kling GW, Kratz TK. 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–70.

    Article  PubMed  CAS  Google Scholar 

  • Cole JJ, Carpenter SR, Pace ML, Van de Bogert MC, Kitchell JL, Hodgson JR. 2006. Differential support of lake food webs by three types of terrestrial organic carbon. Ecol Lett 9:558–68.

    Article  PubMed  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–84.

    Article  CAS  Google Scholar 

  • del Giorgio PA, Peters RH. 1994. Patterns in planktonic P: R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnol Oceanogr 39:772–87.

    Article  Google Scholar 

  • Den Heyer C, Kalff J. 1998. Organic matter mineralization rates in sediments: a within- and among-lake study. Limnol Oceanogr 43:695–705.

    Google Scholar 

  • Dillon PJ, Molot LA. 1997. Dissolved organic and inorganic mass balances in central Ontario lakes. Biogeochemistry 36:29–42.

    Article  CAS  Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–97.

    Google Scholar 

  • Engel A, Thoms S, Riebesell U, Rochelle-Newall E, Zondervan I. 2004. Polysaccharide aggregation as a potential sink in marine dissolved organic carbon. Nature 428:929–32.

    Article  PubMed  CAS  Google Scholar 

  • Evans RD. 1994. Empirical-evidence of the importance of sediment resuspension in lakes. Hydrobiologia 284:5–12.

    Article  Google Scholar 

  • Hanson PC, Pollard AI, Bade DL, Predick K, Carpenter SR, Foley JA. 2004. A model of carbon evasion and sedimentation in temperate lakes. Glob Chang Biol 10:1285–98.

    Article  Google Scholar 

  • Håkanson L, Jansson M. 2002. Principles of Lake sedimentology. Caldwell, New Jersey: Blackburn Press.

    Google Scholar 

  • Jansson M, Persson L, De Roos AM, Jones RI, Tranvik LJ. 2007. Terrestrial carbon and intraspecific size-variation shape lake ecosystems. Trends Ecol Evol 22:316–22.

    Article  PubMed  Google Scholar 

  • Jespersen AM, Christoffersen K. 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv Fur Hydrobiologie 109:445–54.

    CAS  Google Scholar 

  • Jonsson A, Jansson M. 1997. Sedimentation and mineralisation of organic carbon, nitrogen and phosphorus in a large humic lake, northern Sweden. Arch Hydrobiol 141:45–65.

    CAS  Google Scholar 

  • Jonsson A, Meili M, Bergström A-K, Jansson M. 2001. Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N Sweden). Limnol Oceanogr 46:1691–700.

    CAS  Google Scholar 

  • Karlsson J, Jonsson A, Meili M, Jansson M. 2003. Control of zooplankton dependence on allochthonous organic carbon in humic and clear-water lakes in northern Sweden. Limnol Oceanogr 48:269–76.

    Google Scholar 

  • Kling GW, Kipphut GW, Miller MC. 1991. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251:298–301.

    Article  PubMed  CAS  Google Scholar 

  • Kortelainen P, Mattsson T, Finer L, Ahtiainen M, Saukkonen S, Sallantaus T. 2006. Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquat Sci 68:453–68.

    Article  CAS  Google Scholar 

  • Kortelainen P, Pujanenen H, Rantakari M, Saarnisto M. 2004. A large carbon pool and small sink in boreal Holocene lake sediments. Glob Chang Biol 10:1648–53.

    Article  Google Scholar 

  • McKnight DM, Aiken GR. 1998. Sources and age of aquatic humus. In: Tranvik LJ, Hessen DO, Eds. Aquatic humic substances. Berlin Heidelberg New York: Springer-Verlag, pp 9–39.

    Google Scholar 

  • McKnight DM, Westerhoff PK, Doran PT, Kulbe T, Anderson DT. 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48.

    CAS  Google Scholar 

  • Mobed JJ, Hemmingsen SL, Autry JL, McGown LB. 1996. Fluorescence characterization of IHSS humic substances: total luminescence spectra with absorbance correction. Environ Sci Technol 30:3061–5.

    Article  CAS  Google Scholar 

  • Molot LA, Dillon PJ. 1996. Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere. Global Biogeochem cycles 10:483–92.

    Article  CAS  Google Scholar 

  • Molot LA, Dillon PJ. 1997. Photolytic regulation of dissolved organic carbon in northern lakes. Global Biogeochem cycles 11:357–65.

    Article  CAS  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogasen T, Wilander A, Skjelkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:U537–9.

    Article  CAS  Google Scholar 

  • Norrman B. 1993. Filtration of water samples for DOC studies. Mar Chem 41:239–42.

    Article  CAS  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, Van de Bogert MC, Bade DL, Kritzberg ES, Bastviken D. 2004. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–3.

    Article  PubMed  CAS  Google Scholar 

  • Pajunen H. 2000. Carbon in Finnish lake sediments. Espoo, Finland: Geological Survey of Finland.

    Google Scholar 

  • Palmer TN, Ralsanen J. 2002. Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415:512–4.

    Article  PubMed  CAS  Google Scholar 

  • Passow U. 2002. Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333.

    Article  Google Scholar 

  • Passow U, Shipe RF, Murray A, Pak DK, Brzezinski MA, Alldredege AL. 2001. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Cont Shelf Res 21:327–46.

    Article  Google Scholar 

  • Peterson BJ, Fry B. 1987. Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320.

    Article  Google Scholar 

  • Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–18.

    Article  Google Scholar 

  • Schindler DW, Curtis PJ, Bayley SE, Parker BR, Beaty KG, Stainton MP. 1997. Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36:9–28.

    Article  CAS  Google Scholar 

  • Sobek S, Algesten G, Bergström A-K, Jansson M, Tranvik LJ. 2003. The catchment and climate regulation of pCO2 in boreal lakes. Glob Chang Biol 9:630–41.

    Article  Google Scholar 

  • Sobek S, Tranvik LJ, Cole JJ. 2005. Temperature independence of carbon dioxide supersaturation in global lakes. Global Biogeochem cycles 19:GB2003.

    Article  CAS  Google Scholar 

  • Sobek S, Tranvik LJ, Prairie YT, Kortelainen P, Cole JJ. 2007. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol Oceanogr 52:1208–19.

    CAS  Google Scholar 

  • Tranvik LJ. 1989. Bacterioplankton growth, grazing mortality and quantitative relationship to primary production in a humic and a clearwater lake. J Plankton Res 11:985–1000.

    Article  Google Scholar 

  • Tranvik LJ, Jansson M. 2002. Terrestrial export of organic carbon. Nature 415:861–2.

    Article  CAS  Google Scholar 

  • Weiss RF. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–15.

    Article  CAS  Google Scholar 

  • Wetzel RG. 2001. Limnology San Diego, California: Academic Press.

    Google Scholar 

  • Weyhenmeyer GA. 1996. The influence of stratification on the amount and distribution of different settling particles in Lake Erken. Can J Fish Aquat Sci 53:1254–62.

    Article  Google Scholar 

  • Weyhenmeyer GA, Hakanson L, Meili M. 1997. A validated model for daily variations in the flux, origin, and distribution of settling particles within lakes. Limnol Oceanogr 42:1517–29.

    Google Scholar 

  • Wolfe AP, Kaushal SS, Fulton RJ, McKnight DM. 2002. Spectrofluorescence of sediment humic substances and historical changes of lacustrine organic matter provenance in response to atmospheric nutrient enrichment. Environ Sci Technol 36:3217–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Swedish Research Council for Environment, Agricultural Sciences and Spatial planning (FORMAS). We would like to thank Ylva Östlund, Marcus Forslund, Kristiina Nygren, Anders Stenström Danielsson, and Thomas Loreth for assistance in the field as well as Jan Johansson for technical advice and J. Brendan Logue for improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddie von Wachenfeldt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Wachenfeldt, E., Tranvik, L.J. Sedimentation in Boreal Lakes—The Role of Flocculation of Allochthonous Dissolved Organic Matter in the Water Column. Ecosystems 11, 803–814 (2008). https://doi.org/10.1007/s10021-008-9162-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-008-9162-z

Keywords

Navigation