Skip to main content
Log in

Zooplankton to phytoplankton biomass ratios in shallow Florida lakes: an evaluation of seasonality and hypotheses about factors controlling variability

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We examined crustacean zooplankton data (excluding nauplii) from 15 shallow lakes in south and central Florida, spanning a range of sizes and Chlorophyll-a concentrations. Each dataset was comprised of monthly samples from 2 years (6 lakes), or monthly to quarterly samples from 10 or 12 years (9 lakes). We quantified relationships between the zooplankton to phytoplankton biomass ratio (BZ:BP) and measurements of BZ and BP at three levels of resolution: (1) sampling events; (2) seasonal means; and (3) period-of-record means and medians. For individual sampling events, variations in ZB explained most of the variation in BZ:BP and ratios were little affected by changes in BP. Seasonal declines in BZ:BP corresponded with declines in BZ, were not related to declines in biomass of edible algae, and happened in spring–summer when earlier studies indicated high densities of planktivorous fish. Period-of-record means and medians did not identify any relationships between the biomass ratio and either BZ or BP, suggesting that processes affecting the ratio operate at shorter time scales than multiple years. Short-term and seasonal changes in BZ:BP in Florida may be controlled by predation. Testing this hypothesis will require coincident sampling of plankton and fish over a number of years or experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldridge, F. J., E. J. Phlips & C. L. Schelske, 1995. The use of nutrient enrichment bioassays to test for spatial and temporal distribution of limiting factors affecting phytoplankton dynamics in Lake Okeechobee, Florida. Archiv für Hydrobiologie, Advances in Limnology 45: 177–190.

    Google Scholar 

  • Allen, M. S., M. V. Hoyer & D. E. Canfield Jr, 2000. Factors related to gizzard shad and threadfin shad occurrence and abundance in Florida lakes. Journal of Fish Biology 57: 291–302.

    Google Scholar 

  • Auer, B., U. Elzer & H. Arndt, 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. Journal of Plankton Research 26: 697–709.

    Article  Google Scholar 

  • Bachmann, R. W., B. L. Jones, D. D. Fox, M. Hoyer, L. A. Bull & D. E. Canfield Jr, 1996. Relations between trophic state indicators and fish in Florida (USA) lakes. Canadian Journal of Fisheries and Aquatic Sciences 53: 842–855.

    Article  Google Scholar 

  • Berges, J. A., 1997. Ratios, regression statistics, and spurious correlations. Limnology and Oceanography 42: 1006–1007.

    Article  Google Scholar 

  • Brett, M. T., 2005. When is correlation between non-independent variables spurious? Oikos 105: 647–656.

    Article  Google Scholar 

  • Brucet, S., D. Boix, S. Gascon, J. Sala, X. D. Quintana, A. Badosa, M. Sondergaard, T. L. Lauridsen & E. Jeppesen, 2009. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography 32: 692–702.

    Article  Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell, 1988. Consumer control of lake productivity. BioScience 38: 764–769.

    Article  Google Scholar 

  • Crisman, T. L. & J. R. Beaver, 1990. Applicability of planktonic biomanipulation for managing eutrophication in the subtropics. Hydrobiologia 200: 177–185.

    Article  Google Scholar 

  • Fry, B., P. L. Mumford, F. Tam, D. D. Fox, G. L. Warren, K. E. Havens & A. D. Steinman, 1999. Trophic position and individual feeding histories of fish from Lake Okeechobee, Florida. Canadian Journal of Fisheries and Aquatic Sciences 56: 590–600.

    Article  Google Scholar 

  • Gyllström, M., L. A. Hansson, E. Jeppesen, F. Garcia-Criado, E. Gross, K. Irvine, T. Kairesalo, R. Kornijow, M. R. Miracle, M. Nykanen, T. Noges, S. Romo, D. Stephen, E. Van Donk & B. Moss, 2005. The role of climate in shaping zooplankton communities in shallow lakes. Limnology and Oceanography 50: 2008–2021.

    Article  Google Scholar 

  • Hart, R. C., 2006. Food web biomanipulation of South African reservoirs—viable eutrophication management prospect or illusory pipe dream? A reflective commentary and position paper. Water SA 32: 567–575.

    Google Scholar 

  • Hart, R. C., 2011. Zooplankton biomass to chlorophyll ratios in relation to trophic status within and between ten South African reservoirs: causal inferences, and implications for biomanipulation. Water SA 37: 513–521.

    Article  CAS  Google Scholar 

  • Havens, K. E. & J. R. Beaver, 2011. Composition, size, and biomass of zooplankton in large productive Florida lakes. Hydrobiologia 668: 49–60.

    Article  CAS  Google Scholar 

  • Havens, K. E. & T. L. East, 1996. Plankton food web responses to experimental nutrient additions in a subtropical lake. The Scientific World Journal 6: 827–833.

    Article  Google Scholar 

  • Havens, K. E., L. A. Bull, G. L. Warren, T. L. Crisman, E. J. Phlips & K. E. Havens, 1995. Food web structure in a subtropical lake ecosystem. Oikos 75: 20–32.

    Article  Google Scholar 

  • Havens, K. E., T. L. East & J. R. Beaver, 1996. Experimental studies of zooplankton-phytoplankton-nutrient interactions in a large subtropical lake (Lake Okeechobee, Florida, USA). Freshwater Biology 36: 579–597.

    Article  Google Scholar 

  • Havens, K. E., K. A. Work & T. L. East, 2000. Relative efficiencies of carbon transfer from bacteria and algae to zooplankton in a subtropical lake. Journal of Plankton Research 22: 1801–1809.

    Article  Google Scholar 

  • Havens, K. E., A. C. Elia, M. I. Taticchi & R. S. Fulton III, 2009. Zooplankton-phytoplankton relationships in subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy). Hydrobiologia 628: 165–175.

    Article  CAS  Google Scholar 

  • Hillbricht-Ilkowska, A., 1977. Trophic relations and energy flow in pelagic plankton. Polish Ecological Studies 3: 3–98.

    Google Scholar 

  • Hillenbrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Iglesias, C., N. Mazzeo, G. Goyenola, C. Fosalba, F. Teixeira De Mello, S. Garcia & E. Jeppesen, 2011. Field and experimental evidence of the effect of Jenynsia multidentata, a small omnivorous-planktivorous fish, on the size distribution of zooplankton in subtropical lakes. Freshwater Biology 53: 1797–1803.

    Article  Google Scholar 

  • Jackson, L. J., T. L. Lauridsen, M. Sondergaard & E. Jeppesen, 2007. A comparison of shallow Danish and Canadian lakes and implications of climate change. Freshwater Biology 52: 1782–1792.

    Article  CAS  Google Scholar 

  • Jeppesen, E., J. P. Jensen, C. Jensen, B. Faafeng, D. O. Hessen, M. Sondergaard, T. Lauridsen, P. Brettum & K. Christoffersen, 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the Arctic. Ecosystems 6: 313–325.

    Article  CAS  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard & T. Lauridsen, 2005. Response of fish and plankton to nutrient loading reduction in 8 shallow Danish lakes with special emphasis on seasonal dynamics. Freshwater Biology 50: 1616–1627.

    Google Scholar 

  • Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Sondergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.

    Article  CAS  Google Scholar 

  • McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual for the Assessment of Secondary Productivity in Fresh Waters. Blackwell, Oxford: 228–265.

    Google Scholar 

  • McNabb, C. D., 1960. Enumeration of freshwater phytoplankton concentrated on the membrane filter. Limnology and Oceanography 5: 57–61.

    Article  Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. Teixeira De Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007a. Can warm climate-related structure of littoral predator assemblages weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.

    Article  Google Scholar 

  • Meerhoff, M., C. Iglesias, F. Teixeira de Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007b. Effects of habitat complexity on community structure and predator avoidance behavior of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Phlips, E. J., F. J. Aldridge, P. Hansen, P. V. Zimba, J. Ihnat, M. Conroy & P. Ritter, 1993. Spatial and temporal variability of trophic state parameters in a shallow, subtropical lake (Lake Okeechobee, Florida, USA). Archiv für Hydrobiologie 128: 437–458.

    Google Scholar 

  • Pine, W. E. & M. S. Allen, 2001. Differential growth and survival of weekly age-0 black crappie cohorts in a Florida lake. Transactions of the American Fisheries Society 130: 80–91.

    Article  Google Scholar 

  • Rogers, M. W. & M. S. Allen, 2008. Hurricane impacts to Lake Okeechobee: altered hydrology creates difficult management trade-offs. Fisheries 33: 11–17.

    Article  Google Scholar 

  • Stockner, J. G. & E. A. MacIsaac, 1996. British Columbia lake enrichment programme: two decades of habitat enhancement for sockeye salmon. Regulated Rivers Research and Management 12: 547–561.

    Article  Google Scholar 

  • Stockner, J. G. & K. S. Shortreed, 1989. Algal picoplankton production and contribution to food-webs in oligotrophic British Columbia lakes. Hydrobiologia 173: 151–156.

    Article  CAS  Google Scholar 

  • USEPA, 1979. Methods for chemical analysis of water and waste water. United States Environmental Protection Agency, Cincinnati, OH: 490 pp.

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereiningung fuer Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Weisse, T. & J. G. Stockner, 1992. Eutrophication: the role of microbial food webs. Memorie dell Istituto Italiano di Idrobiologia 53: 133–150.

    Google Scholar 

  • Work, W., K. Havens, B. Sharfstein & T. East, 2005. How important is bacterial carbon to planktonic grazers in a turbid, subtropical lake? Journal of Plankton Research 27: 357–372.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to staff at the South Florida and St. Johns River Water Management Districts for collecting water quality and zooplankton samples that provided the data used in this paper, and to two anonymous reviewers for providing comments that led to improvements in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl E. Havens.

Additional information

Handling editor: Mariana Meerhoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havens, K.E., Beaver, J.R. Zooplankton to phytoplankton biomass ratios in shallow Florida lakes: an evaluation of seasonality and hypotheses about factors controlling variability. Hydrobiologia 703, 177–187 (2013). https://doi.org/10.1007/s10750-012-1357-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1357-9

Keywords

Navigation