Skip to main content
Log in

The relationship between arterial stiffness and heart failure with preserved ejection fraction: a systemic meta-analysis

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The objective is to investigate the relationship between arterial stiffness measured by arterial tonometry and echocardiographic indices of diastolic dysfunction—a basis for the diagnosis of heart failure with preserved ejection fraction (HFpEF). OvidSP Medline, Embase and PubMed were systematically searched. Eligible articles correlated arterial stiffness measured by brachial-ankle pulse wave velocity (baPWV), carotid-femoral pulse wave velocity (cfPWV), augmentation index (AIx) or cardio-ankle vascular index (CAVI) with indices of diastolic dysfunction, E/A ratio, peak early mitral annular velocity (e′) and E/e′ ratio. Correlation coefficients were determined using a random-effects model. Twenty-seven studies with 6,626 patients were included. baPWV was significantly correlated with E/A ratio (r = −0.434, 95 % CI −0.387 to −0.479), e′ (r = −0.499, 95 % CI −0.448 to −0.548) and E/e′ ratio (r = 0.372, 95 % CI 0.251–0.481). cfPWV was significantly correlated with E/A ratio (r = −0.391, 95 % CI −0.304 to −0.470) and E/e′ ratio (r = 0.210, 95 % CI 0.300–0.116), but not e′. AIx was significantly correlated with E/A ratio (r = −0.356, 95 % CI −0.255 to −0.450), e′ (r = −0.313, 95 % CI −0.195 to −0.423) and E/e′ ratio (r = 0.321, 95 % CI 0.250–0.388). CAVI was significantly correlated with E/A ratio (r = −0.405, CI −0.324 to −0.481), e′ (r = −0.449, 95 % CI −0.340 to −0.630), but not E/e′. baPWV showed significantly greater correlation with diastolic dysfunction compared to most other tonometric techniques. Arterial stiffness measured by arterial tonometry is an indicator of diastolic dysfunction with baPWV demonstrated the most consistent and strongest association. These data suggest a refocusing on the impact of arterial stiffness on the left ventricle as a potential causative factor leading to HFpEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Borlaug BA, Paulus WJ (2011) Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J 32:670–679

    Article  PubMed Central  PubMed  Google Scholar 

  2. Butler J, Fonarow GC, Zile MR et al (2014) Developing therapies for heart failure with preserved ejection fractioncurrent state and future directions. JACC Heart Fail 2:97–112

    Article  PubMed Central  PubMed  Google Scholar 

  3. Kane GC, Karon BL, Mahoney DW et al (2011) Progression of left ventricular diastolic dysfunction and risk of heart failure. JAMA 306:856–863. doi:10.1001/jama.2011.1201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lam C, Lyass A, Kraigher-Krainer E et al (2011) Cardiac dysfunction and noncardiac dysfunction as precursors of heart failure with reduced and preserved ejection fraction in the community. Circulation 124:24–30. doi:10.1161/CIRCULATIONAHA.110.979203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Tschope C, Paulus WJ (2009) Is echocardiographic evaluation of diastolic function useful in determining clinical care? Doppler echocardiography yields dubious estimates of left ventricular diastolic pressures. Circulation 120:810–820

    Article  PubMed  Google Scholar 

  6. Nagueh SF, Appleton CP, Gillebert TC et al (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 22:107–133

    Article  PubMed  Google Scholar 

  7. Little WC, Oh JK (2009) Echocardiographic evaluation of diastolic function can be used to guide clinical care. Circulation 120:802–809

    Article  PubMed  Google Scholar 

  8. Ogunyankin KO (2011) Assessment of left ventricular diastolic function: the power, possibilities, and pitfalls of echocardiographic imaging techniques. Can J Cardiol 27:311–318

    Article  PubMed  Google Scholar 

  9. Garcia MJ, Thomas JD, Klein AL (1998) New Doppler echocardiographic applications for the study of diastolic function. J Am Coll Cardiol 32:865–875

    Article  CAS  PubMed  Google Scholar 

  10. Nishimura RA, Tajik AJ (1997) Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta Stone. J Am Coll Cardiol 30:8–18

    Article  CAS  PubMed  Google Scholar 

  11. Farias CA, Rodriguez L, Garcia MJ et al (1999) Assessment of diastolic function by tissue doppler echocardiography: comparison with standard transmitral and pulmonary venous flow. J Am Soc Echocardiogr 12:609–617. doi:10.1053/je.1999.v12.a99249

    Article  CAS  PubMed  Google Scholar 

  12. Wang M, Yip GWK, Wang AYM et al (2003) Peak early diastolic mitral annulus velocity by tissue Doppler imaging adds independent and incremental prognostic value. J Am Coll Cardiol 41:820–826

    Article  PubMed  Google Scholar 

  13. Ommen SR, Nishimura RA, Appleton CP et al (2000) Clinical utility of Doppler echocardiography and tissue doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794. doi:10.1161/01.CIR.102.15.1788

    Article  CAS  PubMed  Google Scholar 

  14. Sohn D-W, Chai I-H, Lee D-J et al (1997) Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol 30:474–480

    Article  CAS  PubMed  Google Scholar 

  15. Kasner M, Westermann D, Steendijk P et al (2007) Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation 116:637–647. doi:10.1161/CIRCULATIONAHA.106.661983

    Article  PubMed  Google Scholar 

  16. Chung C-MM, Chu C-MM, Chang S-TT et al (2010) Quantification of aortic stiffness to predict the degree of left ventricular diastolic function. Am J Med Sci 340:468–473

    Article  PubMed  Google Scholar 

  17. Desai AS, Mitchell GF, Fang JC et al (2009) Central aortic stiffness is increased in patients with heart failure and preserved ejection fraction. J Card Fail 15:658–664

    Article  PubMed  Google Scholar 

  18. Chow B, Rabkin SW (2013) Brachial-ankle pulse wave velocity is the only index of arterial stiffness that correlates with a mitral valve indices of diastolic dysfunction, but no index correlates with left atrial size. Cardiol Res Pract 2013:986847

    PubMed Central  PubMed  Google Scholar 

  19. Groenink M, de Roos A, Mulder BJM et al (1998) Changes in aortic distensibility and pulse wave velocity assessed with magnetic resonance imaging following beta-blocker therapy in the marfan syndrome. Am J Cardiol 82:203–208. doi:10.1016/S0002-9149(98)00315-4

    Article  CAS  PubMed  Google Scholar 

  20. Mackenzie IS, Wilkinson IB, Cockcroft JR (2002) Assessment of arterial stiffness in clinical practice. QJM 95:67–74. doi:10.1093/qjmed/95.2.67

    Article  CAS  PubMed  Google Scholar 

  21. DeLoach SS, Townsend RR (2008) Vascular stiffness: its measurement and significance for epidemiologic and outcome studies. Clin J Am Soc Nephrol 3:184–192. doi:10.2215/CJN.03340807

    Article  PubMed  Google Scholar 

  22. Nakae I, Matsuo S, Matsumoto T et al (2008) Augmentation index and pulse wave velocity as indicators of cardiovascular stiffness. Angiology 59:421–426

    Article  PubMed  Google Scholar 

  23. Asmar R, Topouchian J, Pannier B et al (2001) Pulse wave velocity as endpoint in large-scale intervention trial. The Complior(R) study. J Hypertens 19:813–818

    Article  CAS  PubMed  Google Scholar 

  24. Takaki A, Ogawa H, Wakeyama T et al (2008) Cardio-ankle vascular index is superior to brachial-ankle pulse wave velocity as an index of arterial stiffness. Hypertens Res–Clin Exp 31:1347–1355

    Article  Google Scholar 

  25. Munakata M, Nunokawa T, Yoshinaga K, Toyota T (2005) The brachial-ankle pulse wave velocity is a better predictor for pulse pressure than augmentation index in older hypertensives. Jpn Med Assoc J 48:224–233

    Google Scholar 

  26. Weber T, Ammer M, Rammer M et al (2009) Noninvasive determination of carotid-femoral pulse wave velocity depends critically on assessment of travel distance: a comparison with invasive measurement. J Hypertens 27:1624–1630

    Article  CAS  PubMed  Google Scholar 

  27. Nürnberger J, Keflioglu-Scheiber A, Opazo Saez AM et al (2002) Augmentation index is associated with cardiovascular risk. J Hypertens 20:2407–2414. doi:10.1097/01.hjh.0000045501.82010.fa

    Article  PubMed  Google Scholar 

  28. Sakane K, Miyoshi T, Doi M et al (2008) Association of new arterial stiffness parameter, the cardio-ankle vascular index, with left ventricular diastolic function. J Atheroscler Thromb 15:261–268

    Article  CAS  PubMed  Google Scholar 

  29. Wang CP, Hung WC, Yu TH et al (2009) Brachial-ankle pulse wave velocity as an early indicator of left ventricular diastolic function among hypertensive subjects. Clin Exp Hypertens (New York) 31:31–43

    Google Scholar 

  30. Hsu P-CC, Lin T-HH, Lee C-SS et al (2010) Mismatch between arterial stiffness increase and left ventricular diastolic dysfunction. Heart Vessel 25:485–492

    Article  Google Scholar 

  31. Hsu P-C, Lin T-H, Lee C-S et al (2011) Impact of a systolic parameter, defined as the ratio of right brachial pre-ejection period to ejection time, on the relationship between brachial-ankle pulse wave velocity and left ventricular diastolic function. Hypertens Res 34:462–467

    Article  PubMed  Google Scholar 

  32. Hsu P-C, Tsai W-C, Lin T-H et al (2012) Association of arterial stiffness and electrocardiography-determined left ventricular hypertrophy with left ventricular diastolic dysfunction. PLoS One 7:e49100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Masugata H, Senda S, Goda F et al (2009) Tissue Doppler echocardiography for predicting arterial stiffness assessed by cardio-ankle vascular index. Tohoku J Exp Med 217:139–146

    Article  PubMed  Google Scholar 

  34. Masugata H, Senda S, Okuyama H et al (2010) Aortic annular velocity assessed by tissue Doppler echocardiography as a potential parameter of arterial stiffness. Tohoku J Exp Med 221:169–174

    Article  PubMed  Google Scholar 

  35. Field AP (2001) Meta-analysis of correlation coefficients: a Monte Carlo comparison of fixed- and random-effects methods. Psychol Methods 6:161–180

    Article  CAS  PubMed  Google Scholar 

  36. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012

    Article  PubMed  Google Scholar 

  37. Yambe M, Tomiyama H, Hirayama Y et al (2001) Arterial stiffening as a possible risk factor for both atherosclerosis and diastolic heart failure. Hypertens Res 27:625–631

    Article  Google Scholar 

  38. Masugata H, Senda S, Yoshikawa K et al (2005) Relationships between echocardiographic findings, pulse wave velocity, and carotid atherosclerosis in type 2 diabetic patients. Hypertens Res–Clin Exp 28:965–971

    Article  Google Scholar 

  39. Tsioufis C, Chatzis D, Dimitriadis K et al (2005) Left ventricular diastolic dysfunction is accompanied by increased aortic stiffness in the early stages of essential hypertension: a TDI approach. J Hypertens 23:1745–1750

    Article  CAS  PubMed  Google Scholar 

  40. Mizuguchi Y, Oishi Y, Tanaka H et al (2007) Arterial stiffness is associated with left ventricular diastolic function in patients with cardiovascular risk factors: early detection with the use of cardio-ankle vascular index and ultrasonic strain imaging. J Card Fail 13:744–751

    Article  PubMed  Google Scholar 

  41. Ikonomidis I, Tzortzis S, Papaioannou T et al (2008) Incremental value of arterial wave reflections in the determination of left ventricular diastolic dysfunction in untreated patients with essential hypertension. J Hum Hypertens 22:687–698

    Article  CAS  PubMed  Google Scholar 

  42. Kaji Y, Miyoshi T, Doi M et al (2009) Augmentation index is associated with B-type natriuretic peptide in patients with paroxysmal atrial fibrillation. Hypertens Res 32:611–616

    Article  CAS  PubMed  Google Scholar 

  43. Libhaber CD, Norton GR, Majane OH et al (2009) Contribution of central and general adiposity to abnormal left ventricular diastolic function in a community sample with a high prevalence of obesity. Am J Cardiol 104:1527–1533

    Article  PubMed  Google Scholar 

  44. Fukuta H, Ohte N, Wakami K et al (2010) Impact of arterial load on left ventricular diastolic function in patients undergoing cardiac catheterization for coronary artery disease. Circ J 74:1900–1905

    Article  PubMed  Google Scholar 

  45. Kang S, Fan H-M, Li J et al (2010) Relationship of arterial stiffness and early mild diastolic heart failure in general middle and aged population. Eur Heart J 31:2799–2807

    Article  PubMed  Google Scholar 

  46. Triantafyllidi H, Tzortzis S, Lekakis J et al (2010) Association of target organ damage with three arterial stiffness indexes according to blood pressure dipping status in untreated hypertensive patients. Am J Hypertens 23:1265–1272

    Article  PubMed  Google Scholar 

  47. Noguchi S, Masugata H, Senda S et al (2011) Correlation of arterial stiffness to left ventricular function in patients with reduced ejection fraction. Tohoku J Exp Med 225:145–151

    Article  PubMed  Google Scholar 

  48. Shim CY, Park S, Choi D et al (2011) Sex differences in central hemodynamics and their relationship to left ventricular diastolic function. J Am Coll Cardiol 57:1226–1233

    Article  PubMed  Google Scholar 

  49. Soldatos G, Jandeleit-Dahm K, Thomson H et al (2011) Large artery biomechanics and diastolic dysfunction in patients with Type 2 diabetes. Diabet Med 28:54–60

    Article  CAS  PubMed  Google Scholar 

  50. Usui Y, Takata Y, Inoue Y et al (2011) Severe obstructive sleep apnea impairs left ventricular diastolic function in non-obese men. Sleep Med 4:4

    Google Scholar 

  51. Han J-Y, Choi D-H, Choi S-W et al (2012) Predictive value of brachial-ankle pulse wave velocity for cardiovascular events. Am J Med Sci 346:92–97

    Article  Google Scholar 

  52. Roos CJ, Auger D, Djaberi R et al (2013) Relationship between left ventricular diastolic function and arterial stiffness in asymptomatic patients with diabetes mellitus. Int J Cardiovasc Imaging 29:609–616

    Article  PubMed  Google Scholar 

  53. Takami T, Saito Y (2013) Azelnidipine plus olmesartan versus amlodipine plus olmesartan on arterial stiffness and cardiac function in hypertensive patients: a randomized trial. Drug Des Dev Ther 7:175–183

    Article  Google Scholar 

  54. Canepa M, Alghatrif M, Strait JB et al (2014) Early contribution of arterial wave reflection to left ventricular relaxation abnormalities in a community-dwelling population of normotensive and untreated hypertensive men and women. J Hum Hypertens 28:85–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Matsui Y, Kario K, Ishikawa J et al (2005) Smoking and antihypertensive medication: interaction between blood pressure reduction and arterial stiffness. Hypertens Res 28:631–638

    Article  PubMed  Google Scholar 

  56. Kelly RP, Millasseau SC, Ritter JM, Chowienczyk PJ (2001) Vasoactive drugs influence aortic augmentation index independently of pulse-wave velocity in healthy men. Hypertension 37:1429–1433. doi:10.1161/01.HYP.37.6.1429

    Article  CAS  PubMed  Google Scholar 

  57. Yasmin Brown MJ (1999) Similarities and differences between augmentation index and pulse wave velocity in the assessment of arterial stiffness. QJM 92:595–600. doi:10.1093/qjmed/92.10.595

    Article  CAS  PubMed  Google Scholar 

  58. Tanaka H, Munakata M, Kawano Y et al (2009) Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. J Hypertens 27:2022–2027

    Article  CAS  PubMed  Google Scholar 

  59. Yu WC, Chuang SY, Lin YP, Chen CH (2008) Brachial-ankle vs carotid-femoral pulse wave velocity as a determinant of cardiovascular structure and function. J Hum Hypertens 22:24–31

    Article  PubMed  Google Scholar 

  60. Tsai WC, Lee KT, Kuo HF et al (2013) Association of increased arterial stiffness and p wave dispersion with left ventricular diastolic dysfunction. Int J Med Sci 10:1437–1444

    Article  PubMed Central  PubMed  Google Scholar 

  61. Chuang S-Y, Chen C-H, Cheng C-M, Chou P (2005) Combined use of brachial-ankle pulse wave velocity and ankle-brachial index for fast assessment of arteriosclerosis and atherosclerosis in a community. Int J Cardiol 98:99–105. doi:10.1016/j.ijcard.2004.01.019

    Article  PubMed  Google Scholar 

  62. Shirai K, Utino J, Otsuka K, Takata M (2006) A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb 13:101–107

    Article  PubMed  Google Scholar 

  63. Kubozono T, Miyata M, Ueyama K et al (2007) Clinical significance and reproducibility of new arterial distensibility index. Circ J 71:89–94

    Article  PubMed  Google Scholar 

  64. Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure: part II: causal mechanisms and treatment. Circulation 105:1503–1508

    Article  PubMed  Google Scholar 

  65. Laurent S, Cockcroft J, Van Bortel L et al (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27:2588–2605

    Article  PubMed  Google Scholar 

  66. Vlachopoulos C, Aznaouridis K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 55:1318–1327

    Article  PubMed  Google Scholar 

  67. Vlachopoulos C (2012) Progress towards identifying biomarkers of vascular aging for total cardiovascular risk prediction. J Hypertens 30:S19–S26

    Article  CAS  PubMed  Google Scholar 

  68. Safar ME, Levy BI, Struijker-Boudier H (2003) Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 107:2864–2869

    Article  PubMed  Google Scholar 

  69. O’Rourke MF (2001) Diastolic heart failure, diastolic left ventricular dysfunction and exercise intolerance. J Am Coll Cardiol 38:803–805

    Article  PubMed  Google Scholar 

  70. Rabkin SW, Chan SH (2012) Correlation of pulse wave velocity with left ventricular mass in patients with hypertension once blood pressure has been normalized. Heart Int 7:27–31

    Article  Google Scholar 

  71. Lyman GH, Kuderer NM (2005) The strengths and limitations of meta-analyses based on aggregate data. BMC Med Res Methodol 5:14

    Article  PubMed Central  PubMed  Google Scholar 

  72. Coutinho T, Borlaug BA, Pellikka PA et al (2013) Sex differences in arterial stiffness and ventricular–arterial interactions. J Am Coll Cardiol 61:96–103

    Article  PubMed Central  PubMed  Google Scholar 

  73. Jüni P, Holenstein F, Sterne J et al (2002) Direction and impact of language bias in meta-analyses of controlled trials: empirical study. Int J Epidemiol 31:115–123

    Article  PubMed  Google Scholar 

  74. Egger M, Zellweger-Zähner T, Schneider M et al (1997) Language bias in randomised controlled trials published in English and German. Lancet 350:326–329. doi:10.1016/S0140-6736(97)02419-7

    Article  CAS  PubMed  Google Scholar 

  75. Grégoire G, Derderian F, Le Lorier J (1995) Selecting the language of the publications included in a meta-analysis: is there a tower of babel bias? J Clin Epidemiol 48:159–163. doi:10.1016/0895-4356(94)00098-B

    Article  PubMed  Google Scholar 

  76. Moher D, Pham Klassen TP et al (2000) What contributions do languages other than English make on the results of meta-analyses? J Clin Epidemiol 53:964–972. doi:10.1016/S0895-4356(00)00188-8

    Article  CAS  PubMed  Google Scholar 

  77. Ehler D, Carney DK, Dempsey AL et al (2001) Guidelines for cardiac sonographer education: recommendations of the american society of echocardiography sonographer training and education committee. J Am Soc Echocardiogr 14:77–84. doi:10.1067/mje.2001.109922

    Article  CAS  PubMed  Google Scholar 

  78. Deeks JJ, Higgins JPT, Altman DG (2011) Analysing data and undertaking meta-analyses. Cochrane Handb. Syst. Rev. Interv. Version 5.1.0

  79. Chung CS, Strunc A, Oliver R, Kovacs SJ (2006) Diastolic ventricular-vascular stiffness and relaxation relation: elucidation of coupling via pressure phase plane-derived indexes. Am J Physiol–Heart Circ Physiol 291:H2415–H2423

    Article  CAS  PubMed  Google Scholar 

  80. Haluska BA, Jeffriess L, Brown J et al (2010) A comparison of methods for assessing total arterial compliance. J Hum Hypertens 24:254–262

    Article  CAS  PubMed  Google Scholar 

  81. Cohn JN, Finkelstein S, McVeigh G et al (1995) Noninvasive pulse wave analysis for the early detection of vascular disease. Hypertension 26:503–508

    Article  CAS  PubMed  Google Scholar 

  82. Mitchell GF, Lacourciere Y, Arnold JM et al (2005) Changes in aortic stiffness and augmentation index after acute converting enzyme or vasopeptidase inhibition. Hypertension 46:1111–1117

    Article  CAS  PubMed  Google Scholar 

  83. Sun CK (2013) Cardio-ankle vascular index (CAVI) as an indicator of arterial stiffness. Integr Blood Press Control 6:27–38

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon W. Rabkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, B., Rabkin, S.W. The relationship between arterial stiffness and heart failure with preserved ejection fraction: a systemic meta-analysis. Heart Fail Rev 20, 291–303 (2015). https://doi.org/10.1007/s10741-015-9471-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-015-9471-1

Keywords

Navigation