Skip to main content
Log in

Hairy root exudates of allelopathic weed Chenopodium murale L. induce oxidative stress and down-regulate core cell cycle genes in Arabidopsis and wheat seedlings

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The effects of Chenopodium murale root exudates, applied as phytotoxic medias (PMs), were tested on Arabidopsis thaliana and Triticum aestivum. The effects of PMs, where wild-type roots (K), hairy roots derived from roots (R clones) or from cotyledons (C clones) were cultured, were different. K medium suppressed Arabidopsis germination, while other PMs reduced root and leaf elongation and the number of rosette leaves. R media were more phytotoxic than C media. Treatment of Arabidopsis with R8 down-regulated expression of core cell cycle genes: cyclin-dependent kinase (CDK) A1;1, four B-class CDKs, and cyclins CYCA3;1, CYCB2;4, CYCD4;2 and CYCH1 in root and shoot tips. Only CYCD2;1 transcript was elevated in treated shoots, but down-regulated in roots. Wheat Ta-CDC2 and Ta-CYCD2 genes showed the same expression profiles as their Arabidopsis counterparts, CDKA1;1 and CYCD2;1. PMs also caused increase of antioxidative enzyme activities in both plants. Exposure of Arabidopsis to PMs induced one catalase isoform, but repressed another, resulting in no net change of catalase activity. Wheat seedlings treated with PMs had catalase activity significantly elevated in all treatments, particularly in shoots. In both plants, PMs induced the activity of different peroxidase isozymes and total peroxidase activity. Both plants responded to phytotoxic treatments by induction of CuZn-superoxide dismutase. Thus, the phytotoxicity of C. murale root exudates is, at least partially, based on down-regulation of the cell cycle regulators and on generation of oxidative stress in the affected plants. We propose that C. murale root exudates should be considered as means of biological weed control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

3-AT:

3-Aminotriazole

BM:

Basal medium

C9 and C10:

C. murale hairy root clones derived from cotyledons and corresponding phytotoxic root growth media

CAT:

Catalase

CDK:

Cyclin-dependent kinase

CYC:

Cyclin

K:

Phytotoxic medium from wild-type C. murale root culture

PM:

Phytotoxic medium

POX:

Peroxidase

R1, R2, R3, R5 and R8:

C. murale hairy root clones derived from roots and corresponding phytotoxic root growth media

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

β-ME:

β-Mercaptoethanol

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ahmad B, Jan Q, Bashir S, Choudhary MI, Nisar M (2003) Phytochemical evaluation of Chenopodium murale Linn. Asian J Plant Sci 2(15–16):1072–1078

    Google Scholar 

  • Alscher RG, Ertruk N, Heath S (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301(5638):1377–1380

    Article  CAS  PubMed  Google Scholar 

  • Batish DR, Lavanya K, Pal Singh H, Kohli RK (2007a) a) Root-mediated allelopathic interference of nettle-leaved goosefoot (Chenopodium murale) on wheat (Triticum aestivum). J Agron Crop Sci 193(1):37–44

    Article  CAS  Google Scholar 

  • Batish DR, Lavanya K, Singh HP, Kohli RK (2007b) Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Regul 51(2):119–128

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Beyer WF Jr, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161(2):559–566

    Article  CAS  PubMed  Google Scholar 

  • Biemelt S, Keetman U, Mock HP, Grimm B (2000) Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant Cell Environ 23(2):135–144

    Article  CAS  Google Scholar 

  • Bogatek R, Gniazdowska A (2007) ROS and Phytohormons in plant–plant allelopathic interaction. Plant Signal Behav 2(4):317–318

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  PubMed  Google Scholar 

  • Cosio C, Dunand C (2009) Specific functions of individual class III peroxidase genes. J Exp Bot 60(2):391–408

    Article  CAS  PubMed  Google Scholar 

  • El-Khatib AA, Hegazy AK, Galal HK (2004a) Allelopathy in the rhizosphere and amended soil of Chenopodium murale L. Weed Biol Manag 4(1):35–42

    Article  Google Scholar 

  • El-Khatib AA, Hegazy AK, Galal HK (2004b) Does allelopathy have a role in the ecology of Chenopodium murale? Ann Bot Fenn 41(1):37–45

    Google Scholar 

  • El-Sayed NH, Awaad AS, Hifnawy MS, Mabry TJ (1999) A flavonol triglycoside from Chenopodium murale. Phytochemistry 51(4):591–593

    Article  CAS  Google Scholar 

  • Fay PK, Duke WB (1977) An assessment of allelopathic potential in Avena germ plasm. Weed Sci 25(3):224–228

    CAS  Google Scholar 

  • Feng Z, Jin-Kui G, Ying-Li Y, Wen-Liang H, Li-Xin Z (2004) Changes in the pattern of antioxidant enzymes in wheat exposed to water deficit and rewatering. Acta Physiol Plant 26(3):345–352

    Article  Google Scholar 

  • Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MA, Thomas TL, McClung CR (1996) Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol 112(1):327–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghareib HRA, Abdelhamed MS, Ibrahim OH (2010) Antioxidative effects of the acetone fraction and vanillic acid from Chenopodium murale on tomato plants. Weed Biol Manag 10(1):64–72

    Article  Google Scholar 

  • Gohara AA, Elmazar MMA (1997) Isolation of hypotensive flavonoids from Chenopodium species growing in Egypt. Phytother Res 11(8):564–567

    Article  Google Scholar 

  • Golisz A, Sugano M, Fujii Y (2008) Microarray expression profiling of Arabidopsis thaliana L. in response to allelochemicals identified in buckwheat. J Exp Bot 59(11):3099–3109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hallak AMG, Davide LC, Souza IF (1999) Effects of sorghum (Sorghum bicolor L.) root exudates on the cell cycle of the bean plant (Phaseolus vulgaris L.) root. Genet Mol Biol 22(1):95–99

    Article  Google Scholar 

  • Holm L, Doll J, Holm E, Pancho J, Herberger J (1997) World weeds: natural histories and distribution. Wiley, New York

    Google Scholar 

  • Ibrahim LF, Kawashty SA, Baiuomy AR, Shabana MM, El-Eraky WI, El-Negoumy SI (2007) A comparative study of the flavonoids and some biological activities of two Chenopodium species. Chem Nat Compd 43(1):24–28

    Article  CAS  Google Scholar 

  • Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118(2):637–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menges M, De Jager SM, Gruissem W, Murray JA (2005) Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J 41(4):546–566

    Article  CAS  PubMed  Google Scholar 

  • Michalski WP (1996) Chromatographic and electrophoretic methods for analysis of superoxide dismutases. J Chromatogr B 684:59–75

    Article  CAS  Google Scholar 

  • Mitić N, Dmitrović S, Djordjević M, Zdravković-Korać S, Nikolić R, Raspor M, Djordjević T, Maksimović V, Živković S, Krstić-Milošević D, Stanišić M, Ninković S (2012) Use of Chenopodium murale L. transgenic hairy root in vitro culture system as a new tool for allelopathic assays. J Plant Physiol 169(12):1203–1211

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol 31(5):1187–1203

    Article  CAS  PubMed  Google Scholar 

  • Oburger E, Dell’mour M, Hann S, Wieshammer G, Puschenreiter M, Wenzel WW (2013) Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to conventional techniques. Environ Exp Bot 87:235–247

    Article  Google Scholar 

  • Pennacchio M, Jefferson LV, Havens K (2005) Arabidopsis thaliana: a new test species for phytotoxic bioassays. J Chem Ecol 31(8):1877–1885

    Article  CAS  PubMed  Google Scholar 

  • Prasad TK (1997) Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings. Plant Physiol 114(4):1369–1376

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qasem JR (1993) Allelopathic effect of nettle-leaved goosefoot (Chenopodium murale) on wheat and barley. Dirasat Pure Appl Sci 20B(1):80–94

    Google Scholar 

  • Qasem JR (1995) Allelopathic effects of Amaranthus retroflexus and Chenopodium murale on vegetable crops. Allelopathy J 2(1):49–66

    Google Scholar 

  • Rothe GM (2002) Enzyme assays after gel electrophoresis. In: Eisenthal R, Danson MJ (eds) Enzyme assays, a practical approach, 2nd edn. Oxford University Press, Oxford, p 198

    Google Scholar 

  • Rudrappa T, Bonsall J, Gallagher JL, Seliskar DM, Bais HP (2007) Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J Chem Ecol 33(10):1898–1918

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Moreiras AM, de la Peña TC, Reigosa MJ (2008) The natural compound benzoxazolin-2 (3H)-one selectively retards cell cycle in lettuce root meristems. Phytochemistry 69(11):2172–2179

    Article  PubMed  Google Scholar 

  • Seckin B, Sekmen AH, Türkan İ (2009) An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J Plant Growth Regul 28(1):12–20

    Article  CAS  Google Scholar 

  • Selote DS, Khanna-Chopra R (2010) Antioxidant response of wheat roots to drought acclimation. Protoplasma 245(1–4):153–163

    Article  CAS  PubMed  Google Scholar 

  • Soltys D, Rudzińska-Langwald A, Kurek W, Gniazdowska A, Sliwinska E, Bogatek R (2011) Cyanamide mode of action during inhibition of onion (Allium cepa L.) root growth involves disturbances in cell division and cytoskeleton formation. Planta 234(3):609–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soltys D, Krasuska U, Bogatek R, Gniazdowska A (2013) Allelochemicals as bioherbicides—present and perspectives. In: Price AJ, Kelton JA (eds) Herbicides—current research and case studies in use, In tech, pp 517–542. doi:10.5772/56743

  • Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288(1):129–138

    Article  CAS  PubMed  Google Scholar 

  • Van Leene J, Hollunder J, Eeckhout D, Persiau G, Van De Slijke E, Stals H, Van Isterdael G, Verkest A, Neirynck S, Buffel Y, De Bodt S, Maere S, Laukens K, Pharazyn A, Ferreira PC, Eloy N, Renne C, Meyer C, Faure JD, Steinbrenner J, Beynon J, Larkin JC, Van de Peer Y, Hilson P, Kuiper M, De Veylder L, Van Onckelen H, Inze D, Witters E, De Jaeger G (2010) Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Syst Biol 6(397):1–10

    Google Scholar 

  • Vandepoele K, Raes J, De Veylder L, Rouzé P, Rombauts S, Inzé D (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14(4):903–916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7(4):472–479

    Article  CAS  PubMed  Google Scholar 

  • Welinder KG, Justesen AF, Kjærsgård IV, Jensen RB, Rasmussen SK, Jespersen HM, Duroux L (2002) Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. Eur J Biochem 269(24):6063–6081

    Article  CAS  PubMed  Google Scholar 

  • Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    Article  CAS  PubMed  Google Scholar 

  • Ye SF, Zhou YH, Sun Y, Zou LY, Yu JQ (2006) Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environ Exp Bot 56(3):255–262

    Article  CAS  Google Scholar 

  • Yu JQ, Ye SF, Zhang MF, Hu WH (2003) Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem Syst Ecol 31(2):129–139

    Article  CAS  Google Scholar 

  • Zhang Y, Gu M, Shi K, Zhou YH, Yu JQ (2010) Effects of aqueous root extracts and hydrophobic root exudates of cucumber (Cucumis sativus L.) on nuclei DNA content and expression of cell cycle-related genes in cucumber radicles. Plant Soil 327(1–2):455–463

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Education, Science and Technological Development, Republic of Serbia—Projects ON173024 and ON173015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slavica Dmitrović.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrović, S., Simonović, A., Mitić, N. et al. Hairy root exudates of allelopathic weed Chenopodium murale L. induce oxidative stress and down-regulate core cell cycle genes in Arabidopsis and wheat seedlings. Plant Growth Regul 75, 365–382 (2015). https://doi.org/10.1007/s10725-014-9959-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9959-z

Keywords

Navigation