Skip to main content

Advertisement

Log in

Population genetic analysis of hyacinth bean (Lablab purpureus (L.) Sweet, Leguminosae) indicates an East African origin and variation in drought tolerance

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

An Erratum to this article was published on 07 January 2016

Abstract

Population genetic studies are effective ways of researching the origin of, and genetic variation within, crop species, with a view to breeding for increased tolerances or novel traits. This is particularly important now that we are facing climate change and an increasing global population. Lablab purpureus (L.) Sweet (hyacinth bean) is an underutilised legume that has the potential of being an important crop species in the future due to its enhanced environmental tolerances relative to other legumes. It is farmed extensively, but locally, throughout Africa and Asia, however limited research and development of the crop has been undertaken so far, hence an investigation into its origin and diversity is warranted. Our microsatellite analysis suggests an East African origin of Lablab because of the genetic similarities between East African lines and the wild subspecies, subsp. uncinatus. The East African lines were also more genetically diverse. Two chloroplast DNA haplotypes were resolved and Africa was the only continent where both were present, again suggesting an African origin followed by the dissemination of lines outside of Africa coupled with a reduction in genetic diversity. Variation in tolerance to drought was recorded, with some lines able to tolerate 14 days without watering. In sum, we propose an East African origin of Lablab and have identified potential adaptive diversity for future crop breeding attempts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adebisi A, Bosch C (2004) Lablab purpureus (L.) Sweet. In: Grubben G, Denton O (eds) Plant Resources of Tropical Africa (PROTA), no. 2, vegetables. Wageningen, PROTA Foundation, pp 343–348

    Google Scholar 

  • Asgar MA, Fazilah A, Huda N, Bhat R, Karim AA (2010) Nonmeat protein alternatives as meat extenders and meat analogs. Compr Rev Food Sci Food Saf 9:513–529. doi:10.1111/j.1541-4337.2010.00124.x

    Article  CAS  Google Scholar 

  • Ashley J (1993) Drought and crop adaptation. In: Rowland J (ed) Dryland farming in Africa. MacMillan Press, London, pp 46–67

    Google Scholar 

  • Blair MW, Diaz JM, Hidalgo R, Diaz LM, Duque MC (2007) Microsatellite characterization of Andean races of common bean (Phaseolus vulgaris L.). Theor Appl Genet 116:29–43

    Article  CAS  PubMed  Google Scholar 

  • Burke JM, Burger JC, Chapman MA (2007) Crop evolution: from genetics to genomics. Curr Opin Genet Dev 17:525–532

    Article  CAS  PubMed  Google Scholar 

  • Chapman MA (2015) Transcriptome sequencing and marker development for four underutilized legumes. Appl Plant Sci 3:1400111

    Article  Google Scholar 

  • Chapman MA, Pashley CH, Wenzler J, Hvala J, Tang S, Knapp SJ, Burke JM (2008) A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus). Plant Cell 20:2931–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman MA, Hvala J, Strever J, Burke JM (2010) Population genetic analysis of safflower (Carthamus tinctorius; Asteraceae) reveals a Near Eastern origin and five centers of diversity. Am J Bot 97:831–840. doi:10.3732/ajb.0900137

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Ewansiha SU, Singh BB (2006) Relative drought tolerance of important herbaceous legumes and cereals in the moist and semi-arid regions of West Africa. J Food Agric Environ 4:188–190

    Google Scholar 

  • Fuller D (2003) African crops in prehistoric South Asia: a critical review. In: Neumann K, Butler A, Kahlheber S (eds) Foods, fuels, fields—progress in African archaeobotany. Heinrich-Barth Institut, Köln, pp 239–271

    Google Scholar 

  • Harter AV, Gardner KA, Falush D, Lentz DL, Bye RA, Rieseberg LH (2004) Origin of extant domesticated sunflowers in eastern North America. Nature 430:201–205

    Article  CAS  PubMed  Google Scholar 

  • Hinze LL, Fang DD, Gore MA, Scheffler BE, Yu JZ, Frelichowski J, Percy RG (2015) Molecular characterization of the Gossypium diversity reference set of the US National Cotton Germplasm Collection. Theor Appl Genet 128:313–327. doi:10.1007/s00122-014-2431-7

    Article  PubMed  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. doi:10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  • Karachi M (1997) Growth and nutritive value of Lablab purpureus accessions in semi-arid Kenya. Trop Grassl 31:214–218

    Google Scholar 

  • Kimani E, Wachira F, Kinyua M (2012) Molecular diversity of Kenyan lablab bean (Lablab purpureus (L.) Sweet) accessions using amplified fragment length polymorphism markers. Am J Plant Sci 3:313–321

    Article  CAS  Google Scholar 

  • Lasry Benchimol L et al (2007) Structure of genetic diversity among common bean (Phaseolus vulgaris L.) varieties of Mesoamerican and Andean origins using new developed microsatellite markers. Genet Resour Crop Evol 54:1747–1762. doi:10.1007/s10722-006-9184-3

    Article  Google Scholar 

  • Maass BL, Usongo MF (2007) Changes in seed characteristics during the domestication of the lablab bean (Lablab purpureus (L.) Sweet: Papilionoideae). Aust J Agric Res 58:9–19. doi:10.1071/ar05059

    Article  Google Scholar 

  • Maass BL, Jamnadass RH, Hanson J, Pengelly BC (2005) Determining sources of diversity in cultivated and wild Lablab purpureus related to provenance of germplasm by using amplified fragment length polymorphism. Genet Resour Crop Evol 52:683–695. doi:10.1007/s10722-003-6019-3

    Article  Google Scholar 

  • Maass B, Knox M, Venkatesha S, Angessa T, Ramme S, Pengelly B (2010) Lablab purpureus —a crop lost for Africa? Trop Plant Biol 3:123–135

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald LM, Wright P, MacLeod DA (2001) Nitrogen fixation by lablab (Lablab purpureus) and lucerne (Medicago sativa) rotation crops in an irrigated cotton farming system. Aust J Exp Agric 41:219–225. doi:10.1071/ea99143

    Article  Google Scholar 

  • Mondini L, Noorani A, Pagnotta M (2009) Assessing plant genetic diversity by molecular tools. Diversity 1:19–35

    Article  CAS  Google Scholar 

  • Murphy A, Colucci P (1999) A tropical forage solution to poor quality ruminant diets: a review of Lablab purpureus. Livestock Research for Rural Development (FAO) 11. http://www.fao.org/livestock/agap/frg/lrrd/lrrd11/12/colu112.htm

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pengelly BC, Maass BL (2001) Lablab purpureus (L.) Sweet—diversity, potential use and determination of a core collection of this multi-purpose tropical legume. Genet Resour Crop Evol 48:261–272. doi:10.1023/a:1011286111384

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rai N, Singh PK, Rai AC, Rai VP, Singh M (2011) Genetic diversity in Indian bean (Lablab purpureus) germplasm based on morphological traits and RAPD markers. Indian J Agric Sci 81:801–806

    CAS  Google Scholar 

  • Rauscher G, Simko I (2013) Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes. BMC Plant Biol. doi:10.1186/1471-2229-13-11

    PubMed  PubMed Central  Google Scholar 

  • Schaaffhausen R (1963) Dolichos lablab or hyacinth bean: its uses for feed, food and soil improvement. Econ Bot 17:146–153

    Article  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Shivachi A, Kiplagat K, Kinyua G (2012) Microsatellite analysis of selected Lablab purpureus genotypes in Kenya. Rwanda J 28:39–52

    Google Scholar 

  • Tertivanidis K, Koutita O, Papadopoulos I, Tokatlidis I, Tamoutsidis E, Pappa-Michailidou V, Koutsika-Sotiriou M (2008) Genetic diversity in bean populations based on random amplified polymorphic DNA markers. Biotechnology 7:1–9

    Article  CAS  Google Scholar 

  • United Nations (2011) World population prospects. UN Department of Economic and Social Affairs, Population Division, New York

    Google Scholar 

  • Verdcourt B (1970) Studies in the Leguminosae-Papilionoideae for the Flora of Tropical East Africa III. Kew Bull 24:379–447

    Article  Google Scholar 

  • Whyte R, Nilsson-Leissner G, Trumble H (1953) Legumes in agriculture. FAO, Rome

    Google Scholar 

  • Xu S, Wang G, Mao W, Hu Q, Liu N, Ye L, Gong Y (2014) Genetic diversity and population structure of common bean (Phaseolus vulgaris) landraces from China revealed by a new set of EST-SSR markers. Biochem Syst Ecol 57:250–256. doi:10.1016/j.bse.2014.08.012

    Article  CAS  Google Scholar 

  • Zhang G-w, Xu S-c, Mao W-h, Hu Q-z, Gong Y-m (2013a) Determination of the genetic diversity of vegetable soybean Glycine max (L.) Merr. using EST-SSR markers. J Zhejiang Univ Sci B 14:279–288. doi:10.1631/jzus.B1200243

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Xu S, Mao W, Gong Y, Hu Q (2013b) Development of EST-SSR markers to study genetic diversity in hyacinth bean (Lablab purpureus L.). Plant Omics J 6:295–301

    CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the University of Southampton for OR to carry out an undergraduate project in the lab of MAC. We are grateful to the genebanks at the USDA and IITA for their assistance in providing the seed material and to the Department of Zoology, University of Oxford for carrying out the sequencing and genotyping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Chapman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10722-015-0356-x.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robotham, O., Chapman, M. Population genetic analysis of hyacinth bean (Lablab purpureus (L.) Sweet, Leguminosae) indicates an East African origin and variation in drought tolerance. Genet Resour Crop Evol 64, 139–148 (2017). https://doi.org/10.1007/s10722-015-0339-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0339-y

Keywords

Navigation