Skip to main content
Log in

Targeting advanced glycation with pharmaceutical agents: where are we now?

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Advanced glycation end products (AGEs) are the final products of the Maillard reaction, a complex process that has been studied by food chemists for a century. Over the past 30 years, the biological significance of advanced glycation has also been discovered. There is mounting evidence that advanced glycation plays a homeostatic role within the body and that food-related Maillard products, intermediates such as reactive α-dicarbonyl compounds and AGEs, may influence this process. It remains to be understood, at what point AGEs and their intermediates become pathogenic and contribute to the pathogenesis of chronic diseases that inflict current society. Diabetes and its complications have been a major focus of AGE biology due to the abundance of excess sugar and α-dicarbonyls in this family of diseases. While further temporal information is required, a number of pharmacological agents that inhibit components of the advanced glycation pathway have already showed promising results in preclinical models. These therapies appear to have a wide range of mechanistic actions to reduce AGE load. Some of these agents including Alagebrium, have translated successfully to clinical trials, while others such as aminoguanidine, have had undesirable side-effect profiles. This review will discuss different pharmacological agents that have been used to reduce AGE burden in preclinical models of disease with a focus on diabetes and its complications, compare outcomes of those therapies that have reached clinical trials, and provide further rationale for the use of inhibitors of the glycation pathway in chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Monnier, V.M.: Intervention against the Maillard reaction in vivo. Arch. Biochem. Biophys. 419, 1–15 (2003)

  2. Henning, C., Glomb, M.A.: Pathways of the Maillard reaction under physiological conditions. Glycoconj J. (2016). doi:10.1007/s10719-016-9694-y

  3. Poulsen, M.W., Hedegaard, R.V., Andersen, J.M., de Courten, B., Bugel, S., Nielsen, J., et al.: Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol. 60, 10–37 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. Engelen, L., Stehouwer, C.D.A., Schalkwijk, C.G.: Current therapeutic interventions in the glycation pathway: evidence from clinical studies. Diabetes Obes. Metab. 15, 677–689 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. Monnier, V.M., Cerami, A.: Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science (New York, N.Y.) 211, 491–493 (1981)

  6. Ulrich, P., Cerami, A.: Protein glycation, diabetes, and aging. Recent Prog. Horm. Res. 56, 1–21 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. Thornalley, P.J., Langborg, A., Minhas, H.S.: Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 344(Pt 1), 109–116 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Westwood, M.E., Thornalley, P.J.: Molecular characteristics of methylglyoxal-modified bovine and human serum albumins. Comparison with glucose-derived advanced glycation endproduct-modified serum albumins. J. Protein Chem. 14, 359–372 (1995)

    Article  CAS  PubMed  Google Scholar 

  9. Giardino, I., Edelstein, D., Brownlee, M.: BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. J. Clin. Invest. 97, 1422–1428 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giardino, I., Edelstein, D., Brownlee, M.: Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J. Clin. Invest. 94, 110–117 (1994)

  11. Leslie, R.D.G., Beyan, H., Sawtell, P., Boehm, B.O., Spector, T.D., Snieder, H.: Level of an Advanced Glycated End Product Is Genetically Determined: A Study of Normal Twins. Diabetes 52, 2441–2444 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Adams, J.N., Raffield, L.M., Martelle, S.E., Freedman, B.I., Langefeld, C.D., Carr, J.J., et al.: Genetic analysis of advanced glycation end products in the DHS MIND study. Gene 584, 173–179 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. Vlassara, H., Cai, W., Crandall, J., Goldberg, T., Oberstein, R., Dardaine, V., et al.: Inflammatory mediators are induced by dietary glycotoxins a major risk factor for diabetic angiopathy. Proc. Natl. Acad. Sci. 99, 15596–15601 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Courten, B., de Courten, M.P., Soldatos, G., Dougherty, S.L., Straznicky, N., Schlaich, M. et al.: Diet low in advanced glycation end products increases insulin sensitivity in healthy overweight individuals: a double-blind, randomized, crossover trial. Am. J. Clin. Nutr. (2016)

  15. Seiquer, I., Diaz-Alguacil, J., Delgado-Andrade, C., Lopez-Frias, M., Munoz Hoyos, A., Galdo, G., et al.: Diets rich in Maillard reaction products affect protein digestibility in adolescent males aged 11–14 y. Am. J. Clin. Nutr. 83, 1082–1088 (2006)

    CAS  PubMed  Google Scholar 

  16. Hellwig, M., Matthes, R., Peto, A., Löbner, J., Henle, T.: N-ε-fructosyllysine and N-ε-carboxymethyllysine, but not lysinoalanine, are available for absorption after simulated gastrointestinal digestion. Amino Acids 46, 289–299 (2013)

    Article  PubMed  CAS  Google Scholar 

  17. Ott, C., Jacobs, K., Haucke, E., Navarrete Santos, A., Grune, T., Simm, A.: Role of advanced glycation end products in cellular signaling. Redox Biol. 2, 411–429 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Horiuchi, S., Sakamoto, Y., Sakai, M.: Scavenger receptors for oxidized and glycated proteins. Amino Acids 25, 283–292 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Singh, R., Barden, A., Mori, T., Beilin, L.: Advanced glycation end-products: a review. Diabetologia 44, 129–146 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Weiss, M.F., Erhard, P., Kader-Attia, F.A., Wu, Y.C., Deoreo, P.B., Araki, A., et al.: Mechanisms for the formation of glycoxidation products in end-stage renal disease. Kidney Int. 57, 2571–2585 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. Williams, M.A., Enquobahrie, D.A., Zimmer, J., Qiu, C.F., Hevner, K.: Maternal plasma advanced glycation end products concentrations in response to oral 50-gram glucose load in mid-pregnancy: a pilot study. Clin. Lab. (Heidelberg) 58, 1045–1050 (2012)

    CAS  Google Scholar 

  22. Schiekofer, S., Andrassy, M., Chen, J., Rudofsky, G., Schneider, J.: Acute hyperglycemia causes intracellular formation of CML and activation of ras, p42/44 MAPK, and nuclear factor kappaB in PBMCs. Diabetes (New York, N.Y.) 52, 621–633 (2003)

    CAS  Google Scholar 

  23. Maessen, D.E., Hanssen, N.M., Scheijen, J.L., van der Kallen, C.J., van Greevenbroek, M.M., Stehouwer, C.D., et al.: Post–Glucose Load Plasma α-Dicarbonyl Concentrations Are Increased in Individuals With Impaired Glucose Metabolism and Type 2 Diabetes: The CODAM Study. Diabetes Care 38, 913–920 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. Frizzell, N., Baynes John, W.: Chelation therapy for the management of diabetic complications: a hypothesis and a proposal for clinical laboratory assessment of metal ion homeostasis in plasma. Clin. Chem. Lab. Med. 52, 69, ed (2014).

  25. Nagai, R., Murray, D.B., Metz, T.O., Baynes, J.W.: Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. Diabetes (New York, N.Y.) 61, 549–559 (2012)

    CAS  Google Scholar 

  26. West, B.J., Deng, S., Uwaya, A., Isami, F., Abe, Y., Yamagishi, S., C. Jarakae Jensen., et al.: Iridoids are natural glycation inhibitors. Glycoconj J. (2016). doi:10.1007/s10719-016-9695-x

  27. Yamagishi, S., Taguchi, K., Fukami, K.: DNA-aptamers raised against AGEs as a blocker of various aging-related disorders. Glycoconj J. (2016). doi:10.1007/s10719-016-9682-2

  28. Solís-Calero, C., Ortega-Castro, J., Frau, J., Muñoz, F.: Scavenger mechanism of methylglyoxal by metformin. A DFT study. Theor. Chem. Accounts 134, 1–14 (2015)

    Article  CAS  Google Scholar 

  29. Beisswenger, P., Ruggiero-Lopez, D.: Metformin inhibition of glycation processes. Diabetes Metab. 29, 6S95–6S103 (2003)

    Article  CAS  PubMed  Google Scholar 

  30. Peyroux, J., Sternberg, M.: Advanced glycation endproducts (AGEs): pharmacological inhibition in diabetes. Pathol. Biol. 54, 405–419 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. Brownlee, M., Vlassara, H., Kooney, A., Ulrich, P., Cerami, A.: Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science (New York, N.Y.) 232, 1629–1632 (1986)

    Article  CAS  Google Scholar 

  32. Nyengaard, J.R., Chang, K., Berhorst, S., Reiser, K.M., Williamson: Discordant effects of guanidines on renal structure and function and on regional vascular dysfunction and collagen changes in diabetic rats. Diabetes (New York, N.Y.) 46, 94–106 (1997)

    CAS  Google Scholar 

  33. Soulis, T., Cooper, E.M., Sastra, S., Thallas, V., Panagiotopoulos, S., Bjerrum, J.O., et al.: Relative contributions of advanced glycation and nitric oxide synthase inhibition to aminoguanidine-mediated renoprotection in diabetic rats. Diabetologia 40, 1141–1151 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. Degenhardt, T.P., Fu, M.-X., Voss, E., Reiff, K., Neidlein, R., Strein, K., et al.: Aminoguanidine inhibits albuminuria, but not the formation of advanced glycation end-products in skin collagen of diabetic rats. Diabetes Res. Clin. Pract. 43, 81–89 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. Soulis, T., Cooper, M.E., Vranes, D., Bucala, R., Jerums, G.: Effects of aminoguanidine in preventing experimental diabetic nephropathy are related to the duration of treatment. Kidney Int. 50, 627–634 (1996)

    Article  CAS  PubMed  Google Scholar 

  36. Corbett, J.A., Tilton, R.G., Chang, K., Hasan, K.S., Ido, Y., Wang, J.L., et al.: Aminoguanidine, a Novel Inhibitor of Nitric Oxide Formation, Prevents Diabetic Vascular Dysfunction. Diabetes 41, 552–556 (1992)

    Article  CAS  PubMed  Google Scholar 

  37. Lo, T.W., Selwood, T., Thornalley, P.J.: The reaction of methylglyoxal with aminoguanidine under physiological conditions and prevention of methylglyoxal binding to plasma proteins. Biochem. Pharmacol. 48, 1865–1870 (1994)

    Article  CAS  PubMed  Google Scholar 

  38. Yu, P.H., Zuo, D.M.: Aminoguanidine inhibits semicarbazide-sensitive amine oxidase activity: implications for advanced glycation and diabetic complications. Diabetologia 40, 1243–1250 (1997)

    Article  CAS  PubMed  Google Scholar 

  39. Thornalley, P.J.: Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch. Biochem. Biophys. 419, 31–40 (2003)

    Article  CAS  PubMed  Google Scholar 

  40. Alderton, W.K., Cooper, C.E., Knowles, R.G.: Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357, 593–615 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Price, D.L., Rhett, P.M., Thorpe, S.R., Baynes, J.W.: Chelating Activity of Advanced Glycation End-product Inhibitors. J. Biol. Chem. 276, 48967–48972 (2001)

    Article  CAS  PubMed  Google Scholar 

  42. Boel, E., Selmer, J., Flodgaard, H.J., Jensen, T.: Diabetic late complications: Will aldose reductase inhibitors or inhibitors of advanced glycosylation endproduct formation hold promise? J. Diabetes Complicat. 9, 104–129 (1995)

    Article  CAS  PubMed  Google Scholar 

  43. Foote, E.F., Look, Z.M., Giles, P., Keane, W.F., Halstenson, C.E.: The pharmacokinetics of aminoguanidine in end-stage renal disease patients on hemodialysis. Am. J. Kidney Dis. 25, 420–425 (1995)

    Article  CAS  PubMed  Google Scholar 

  44. Bolton, W.K., Cattran, D.C., Williams, M.E., Adler, S.G., Appel, G.B., Cartwright, K., et al.: Randomized Trial of an Inhibitor of Formation of Advanced Glycation End Products in Diabetic Nephropathy. Am. J. Nephrol. 24, 32–40 (2004)

    Article  CAS  PubMed  Google Scholar 

  45. Freedman, B.I., Wuerth, J.-P., Cartwright, K., Bain, R.P., Dippe, S., Hershon, K., et al.: Design and Baseline Characteristics for the Aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy (ACTION II). Control. Clin. Trials 20, 493–510 (1999)

    Article  CAS  PubMed  Google Scholar 

  46. Nakamura, S., Makita, Z., Ishikawa, S., Yasumura, K., Fujii, W.: Progression of nephropathy in spontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation. Diabetes (New York, N.Y.) 46, 895–899 (1997)

    CAS  Google Scholar 

  47. Wada, R., Nishizawa, Y., Yagihashi, N., Takeuchi, M., Ishikawa, Y.: Effects of OPB-9195, anti-glycation agent, on experimental diabetic neuropathy. Eur. J. Clin. Investig. 31, 513–520 (2001)

    Article  CAS  Google Scholar 

  48. Miyata, T., Ishikawa, S., Asahi, K., Inagi, R., Suzuki, D., Horie, K., et al.: 2-Isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanilide (OPB-9195) treatment inhibits the development of intimal thickening after balloon injury of rat carotid artery: role of glycoxidation and lipoxidation reactions in vascular tissue damage. FEBS Lett. 445, 202–206 (1999)

    Article  CAS  PubMed  Google Scholar 

  49. Rahbar, S., Figarola, J.L.: Novel inhibitors of advanced glycation endproducts. Arch. Biochem. Biophys. 419, 63–79 (2003)

    Article  CAS  PubMed  Google Scholar 

  50. Miyata, T., Ueda, Y., Asahi, K., Izuhara, Y., Inagi, R.: Mechanism of the inhibitory effect of OPB-9195 [( /-)-2-isopropylidenehydrazono-4-oxo-thiazolidin-5-yla cetanilide] on advanced glycation end product and advanced lipoxidation end product formation. J. Am. Soc. Nephrol. 11, 1719–1725 (2000)

    CAS  PubMed  Google Scholar 

  51. Yamamoto, Y., Kato, I., Doi, T., Yonekura, H., Ohashi, S.: Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J. Clin. Invest. 108, 261–268 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miyata, T., Kurokawa, K., van Ypersele de Strihou, C.: From molecular footprints of disease to new therapeutic interventions in diabetic nephropathy: a detective story. Curr. Drug Targets. Immune, Endocr. Metabol. Disord. 5, 323–329 (2005)

    Article  CAS  Google Scholar 

  53. Figarola, J.L., Scott, S., Loera, S., Tessler, C., Chu, P.: LR-90 a new advanced glycation endproduct inhibitor prevents progression of diabetic nephropathy in streptozotocin-diabetic rats. Diabetologia 46, 1140–1152 (2003)

    Article  CAS  PubMed  Google Scholar 

  54. Figarola, J.L., Loera, S., Weng, Y., Shanmugam, N., Natarajan, R.: LR-90 prevents dyslipidaemia and diabetic nephropathy in the Zucker diabetic fatty rat. Diabetologia 51, 882–891 (2008)

    Article  CAS  PubMed  Google Scholar 

  55. Bhatwadekar, A., Glenn, J.V., Figarola, J.L., Scott, S., Gardiner, T.A., Rahbar, S., et al.: A new advanced glycation inhibitor, LR-90, prevents experimental diabetic retinopathy in rats. Br. J. Ophthalmol. 92, 545–547 (2008)

    Article  CAS  PubMed  Google Scholar 

  56. Lonsdale, D.: A Review of the Biochemistry, Metabolism and Clinical Benefits of Thiamin(e) and Its Derivatives. Evid. Based Complement. Alternat. Med. 3, 49–59 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  57. La Selva, M., Beltramo, E., Pagnozzi, F., Bena, E., Molinatti, P.A., Molinatti, G.M., et al.: Thiamine corrects delayed replication and decreases production of lactate and advanced glycation end-products in bovine retinal and human umbilical vein endothelial cells cultured under high glucose conditions. Diabetologia 39, 1263–1268 (1996)

    Article  PubMed  Google Scholar 

  58. Stracke, H., Hammes, H.P., Werkmann, D., Mavrakis, K., Bitsch, I., Netzel, M., et al.: Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats. Exp. Clin. Endocrinol. Diabetes 109, 330–336 (2001)

    Article  CAS  PubMed  Google Scholar 

  59. Babaei-Jadidi, R., Karachalias, N., Ahmed, N., Battah, S., Thornalley, P.J.: Prevention of Incipient Diabetic Nephropathy by High-Dose Thiamine and Benfotiamine. Diabetes 52, 2110–2120 (2003)

    Article  CAS  PubMed  Google Scholar 

  60. Hammes, H.-P., Du, X., Edelstein, D., Taguchi, T., Matsumura, T., Ju, Q., et al.: Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat. Med. 9, 294–299 (2003)

    Article  CAS  PubMed  Google Scholar 

  61. Bitsch, R., Wolf, M., Möller, J., Heuzeroth, L., Grüneklee, D.: Bioavailability Assessment of the Lipophilic Benfotiamine as Compared to a Water-Soluble Thiamin Derivative. Ann. Nutr. Metab. 35, 292–296 (1991)

    Article  CAS  PubMed  Google Scholar 

  62. Rabbani, N., Alam, S.S., Riaz, S., Larkin, J.R., Akhtar, M.W., Shafi, T., et al.: High-dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: a randomised, double-blind placebo-controlled pilot study. Diabetologia 52, 208–212 (2009)

    Article  CAS  PubMed  Google Scholar 

  63. Schupp, N., Dette, E.M., Schmid, U., Bahner, U., Winkler, M., Heidland, A., et al.: Benfotiamine reduces genomic damage in peripheral lymphocytes of hemodialysis patients. Naunyn Schmiedeberg’s Arch. Pharmacol. 378, 283–291 (2008)

    Article  CAS  Google Scholar 

  64. Alkhalaf, A., Kleefstra, N., Groenier, K.H., Bilo, H.J.G., Gans, R.O.B., Heeringa, P., et al.: Effect of Benfotiamine on Advanced Glycation Endproducts and Markers of Endothelial Dysfunction and Inflammation in Diabetic Nephropathy. PLoS ONE 7, e40427 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alkhalaf, A., Klooster, A., van Oeveren, W., Achenbach, U., Kleefstra, N., Slingerland, R.J., et al.: A Double-Blind Randomized, Placebo-Controlled Clinical Trial on Benfotiamine Treatment in Patients With Diabetic Nephropathy. Diabetes Care 33, 1598–1601 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Du, X., Edelstein, D., Brownlee, M.: Oral benfotiamine plus α-lipoic acid normalises complication-causing pathways in type 1 diabetes. Diabetologia 51, 1930–1932 (2008)

    Article  CAS  PubMed  Google Scholar 

  67. Fraser, D.A., Diep, L.M., Hovden, I.A., Nilsen, K.B., Sveen, K.A., Seljeflot, I., et al.: The Effects of Long-Term Oral Benfotiamine Supplementation on Peripheral Nerve Function and Inflammatory Markers in Patients With Type 1 Diabetes: A 24-month, double-blind, randomized, placebo-controlled trial. Diabetes Care 35, 1095–1097 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stirban, A., Negrean, M., Stratmann, B., Gawlowski, T., Horstmann, T., Götting, C., et al.: Benfotiamine Prevents Macro- and Microvascular Endothelial Dysfunction and Oxidative Stress Following a Meal Rich in Advanced Glycation End Products in Individuals With Type 2 Diabetes. Diabetes Care 29, 2064–2071 (2006)

    Article  CAS  PubMed  Google Scholar 

  69. Stracke, H., Lindemann, A., Federlin, K.: A Benfotiamine-vitamin B combination in treatment of diabetic polyneuropathy. Exp. Clin. Endocrinol. Diabetes 104, 311–316 (1996)

    Article  CAS  PubMed  Google Scholar 

  70. Booth, A.A., Khalifah, R.G., Todd, P., Hudson, B.G.: In Vitro Kinetic Studies of Formation of Antigenic Advanced Glycation End Products (AGEs): NOVEL INHIBITION OF POST-AMADORI GLYCATION PATHWAYS. J. Biol. Chem. 272, 5430–5437 (1997)

  71. Nagaraj, R.H., Sarkar, P., Mally, A., Biemel, K.M., Lederer, M.O., Padayatti, P.S.: Effect of pyridoxamine on chemical modification of proteins by carbonyls in diabetic rats: characterization of a major product from the reaction of pyridoxamine and methylglyoxal. Arch. Biochem. Biophys. 402, 110–119 (2002)

    Article  CAS  PubMed  Google Scholar 

  72. Voziyan, P.A., Metz, T.O., Baynes, J.W., Hudson, B.G.: A Post-Amadori Inhibitor Pyridoxamine Also Inhibits Chemical Modification of Proteins by Scavenging Carbonyl Intermediates of Carbohydrate and Lipid Degradation. J. Biol. Chem. 277, 3397–3403 (2002)

    Article  CAS  PubMed  Google Scholar 

  73. Voziyan, P.A., Khalifah, R.G., Thibaudeau, C., Yildiz, A., Jacob, J., Serianni, A.S., et al.: Modification of Proteins In Vitro by Physiological Levels of Glucose: Pyridoxamine Inhibits Conversion Of Amadori Intermediate To Advanced Glycation End-Products Through Binding Of Redox Metal Ions. J. Biol. Chem. 278, 46616–46624 (2003)

  74. Onorato, J.M., Jenkins, A.J., Thorpe, S.R., Baynes, J.W.: Pyridoxamine, an Inhibitor of Advanced Glycation Reactions, Also Inhibits Advanced Lipoxidation Reactions: Mechanism Of Action Of Pyridoxamine. J. Biol. Chem. 275, 21177–21184 (2000)

    Article  CAS  PubMed  Google Scholar 

  75. Jain, S.K., Lim, G.: Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+ + K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Radic. Biol. Med. 30, 232–237 (2001)

    Article  CAS  PubMed  Google Scholar 

  76. Shimoi, K., Okitsu, A., Green, M.H.L., Lowe, J.E., Ohta, T., Kaji, K., et al.: Oxidative DNA damage induced by high glucose and its suppression in human umbilical vein endothelial cells. Mutat. Res. Fundam. Mol. Mech. Mutagen. 480–481, 371–378 (2001)

    Article  Google Scholar 

  77. Yang, S., Litchfield, J.E., Baynes, J.W.: AGE-breakers cleave model compounds, but do not break Maillard crosslinks in skin and tail collagen from diabetic rats. Arch. Biochem. Biophys. 412, 42–46 (2003)

    Article  CAS  PubMed  Google Scholar 

  78. Degenhardt, T.P., Alderson, N.L., Arrington, D.D., Beattie, R.J., Basgen, J.M.: Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int. 61, 939–950 (2002)

    Article  CAS  PubMed  Google Scholar 

  79. Alderson, N.L., Chachich, M.E., Youssef, N.N., Beattie, R.J., Nachtigal, M.: The AGE inhibitor pyridoxamine inhibits lipemia and development of renal and vascular disease in Zucker obese rats. Kidney Int. 63, 2123–2133 (2003)

    Article  CAS  PubMed  Google Scholar 

  80. Zheng, F., Zeng, Y.J., Plati, A.R., Elliot, S.J., Berho, M., Potier, M., et al.: Combined AGE inhibition and ACEi decreases the progression of established diabetic nephropathy in B6 db//db mice. Kidney Int. 70, 507–514 (2006)

    Article  CAS  PubMed  Google Scholar 

  81. Nascimento, M.M., Suliman, M.E., Murayama, Y., Nihi, M., Hayashi, S.Y.: Effect of high-dose thiamine and pyridoxine on advanced glycation end products and other oxidative stress markers in hemodialysis patients: a randomized placebo-controlled study. J. Ren. Nutr. 16, 119–124 (2006)

    Article  PubMed  Google Scholar 

  82. Williams, M.E., Bolton, W.K., Khalifah, R.G., Degenhardt, T.P., Schotzinger, R.J.: Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. Am. J. Nephrol. 27, 605–614 (2007)

    Article  CAS  PubMed  Google Scholar 

  83. NephroGenex. Inc. (2016). PYR-311: pyridorin in patients with diabetic nephropathy. Available: http://www.nephrogenex.com/clinical-trials/pioneer-phase-3-program/

  84. Vasan, S., Zhang, X., Zhang, X.N., Kapurniotu, A., Bernhagen, J.: An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature (London) 382, 275–278 (1996)

  85. Cooper, M.E., Thallas, V., Forbes, J., Scalbert, E., Sastra, S.: The cross-link breaker, N-phenacylthiazolium bromide prevents vascular advanced glycation end-product accumulation. Diabetologia 43, 660–664 (2000)

    Article  CAS  PubMed  Google Scholar 

  86. Schwedler, S.B., Verbeke, P., Bakala, H., Weiss, M.F., Vilar, J., Depreux, P., et al.: N-phenacylthiazolium bromide decreases renal and increases urinary advanced glycation end products excretion without ameliorating diabetic nephropathy in C57BL/6 mice. Diabetes Obes. Metab. 3, 230–239 (2001)

    Article  CAS  PubMed  Google Scholar 

  87. Oturai, P.S., Christensen, M., Rolin, B., Pedersen, K.E., Mortensen, S.B.: Effects of advanced glycation end-product inhibition and cross-link breakage in diabetic rats. Metab. Clin. Exp. 49, 996–1000 (2000)

    Article  CAS  PubMed  Google Scholar 

  88. Thornalley, P.J., Minhas, H.S.: Rapid hydrolysis and slow alpha, beta-dicarbonyl cleavage of an agent proposed to cleave glucose-derived protein cross-links. Biochem. Pharmacol. 57, 303–307 (1999)

    Article  CAS  PubMed  Google Scholar 

  89. Wolffenbuttel, B.H., Boulanger, C.M., Crijns, F.R.L., Huijberts, M.S.P., Poitevin, P.: Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc. Natl. Acad. Sc. - PNAS 95, 4630–4634 (1998)

    Article  CAS  Google Scholar 

  90. Freidja, M.L., Tarhouni, K., Toutain, B., Fassot, C., Loufrani, L., Henrion, D.: The AGE-Breaker ALT-711 Restores High Blood Flow–Dependent Remodeling in Mesenteric Resistance Arteries in a Rat Model of Type 2 Diabetes. Diabetes 61, 1562–1572 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Asif, M., Egan, J., Vasan, S., Jyothirmayi, G.N., Masurekar, M.R.: An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness. Proc. Natl. Acad. Sc. - PNAS 97, 2809–2813 (2000)

    Article  CAS  Google Scholar 

  92. Forbes, J.M., Yee, L.T.L., Thallas, V., Lassila, M., Candido, R.: Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes (New York, N.Y.) 53, 1813–1823 (2004)

    CAS  Google Scholar 

  93. Watson, A.M.D., Soro-Paavonen, A., Sheehy, K., Li, J., Calkin, A.C., Koitka, A., et al.: Delayed intervention with AGE inhibitors attenuates the progression of diabetes-accelerated atherosclerosis in diabetic apolipoprotein E knockout mice. Diabetologia 54, 681–689 (2011)

    Article  CAS  PubMed  Google Scholar 

  94. Wang, L., Tian, W., Uwais, Z., Li, G., Li, H., Guan, R., et al.: AGE-Breaker ALT-711 Plus Insulin Could Restore Erectile Function in Streptozocin-Induced Type 1 Diabetic Rats. J. Sex. Med. 11, 1452–1462 (2014)

    Article  CAS  PubMed  Google Scholar 

  95. Gurbuz, N., Sagdic, G., Sanli, A., Ciftcioglu, A., Bassorgun, I.: Therapeutic effect of combination of alagebrium (ALT-711) and sildenafil on erectile function in diabetic rats. Int. J. Impot. Res. 24, 114–121 (2012)

    Article  CAS  PubMed  Google Scholar 

  96. Candido, R., Forbes, J.M., Thomas, M.C., Thallas, V., Dean, R.G.: A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ. Res. 92, 785–792 (2003)

    Article  CAS  PubMed  Google Scholar 

  97. Mentink, C.J.A.L., Hendriks, M., Levels, A.A.G., Wolffenbuttel, B.H.R.: Glucose-mediated cross-linking of collagen in rat tendon and skin. Clin. Chim. Acta 321, 69–76 (2002)

    Article  CAS  PubMed  Google Scholar 

  98. Liu, J., Masurekar, M.R., Vatner, D.E., Jyothirmayi, G.N., Regan, T.J., Vatner, S.F., et al.: Glycation end-product cross-link breaker reduces collagen and improves cardiac function in aging diabetic heart. Am. J. Physiol. Heart Circ. Physiol. 285, H2587–H2591 (2003)

    Article  CAS  PubMed  Google Scholar 

  99. Susic, D., Varagic, J., Frohlich, E.D.: Cardiovascular and renal effects of a collagen cross-link breaker (ALT 711) in adult and aged spontaneously hypertensive rats. Am. J. Hypertens. 17, 328–333 (2004)

    Article  CAS  PubMed  Google Scholar 

  100. Kranstuber, A., del Rio, C., Biesiadecki, B., Hamlin, R., Ottobre, J., Gyorke, S. et al.: Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling. Front. Physiol. 3, (2012).

  101. Shapiro, B.P., Owan, T.E., Mohammed, S.F., Meyer, D.M., Mills, L.D., Schalkwijk, C.G., et al.: Advanced Glycation End Products Accumulate in Vascular Smooth Muscle and Modify Vascular but Not Ventricular Properties in Elderly Hypertensive Canines. Circulation 118, 1002–1010 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim, J.-B., Song, B.-W., Park, S., Hwang, K.-C., Cha, B.-S., Jang, Y., et al.: Alagebrium Chloride, a Novel Advanced Glycation End-Product Cross Linkage Breaker, Inhibits Neointimal Proliferation in a Diabetic Rat Carotid Balloon Injury Model. Korean Circ. J. 40, 520–526 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, B., Zhang, B., He, K.L., Chen, W., Cheng, X.F.: Alagebrium (ALT-711) improves the anti-hypertensive efficacy of nifedipine in diabetic-hypertensive rats. Hypertens. Res. 37, 901–907 (2014)

    Article  CAS  PubMed  Google Scholar 

  104. Lassila, M., Seah, K.K., Allen, T.J., Thallas, V., Thomas, M.C., Candido, R., et al.: Accelerated Nephropathy in Diabetic Apolipoprotein E-Knockout Mouse: Role of Advanced Glycation End Products. J. Am. Soc. Nephrol. 15, 2125–2138 (2004)

    Article  CAS  PubMed  Google Scholar 

  105. Thallas-Bonke, V., Lindschau, C., Rizkalla, B., Bach, L.A., Boner, G.: Attenuation of extracellular matrix accumulation in diabetic nephropathy by the advanced glycation end product cross-link breaker ALT-711 via a protein kinase C-alpha-dependent pathway. Diabetes (New York, N.Y.) 53, 2921–2930 (2004)

    CAS  Google Scholar 

  106. Forbes, J.M., Thallas, V., Thomas, M.C., Founds, H.W., Burns, W.C., Jerums, G., et al.: The breakdown of pre-existing advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J. (2003).

  107. Hollenbach, S., Thampi, P., Viswanathan, T., Abraham, E.C.: Cleavage of in vitro and in vivo formed lens protein cross-links by a novel cross-link breaker. Mol. Cell. Biochem. 243, 73–80 (2003)

  108. Kim, T., Spiegel, D.A.: The unique reactivity of N-phenacyl-derived thiazolium salts toward α-dicarbonyl compounds. Rejuvenation Res. 16, 43–50 (2013)

    Article  PubMed  CAS  Google Scholar 

  109. Guo, Y., Lu, M., Qian, J., Cheng, Y.-l.: Alagebrium Chloride Protects the Heart Against Oxidative Stress in Aging Rats. J. Gerontol. A Biol. Sci. Med. Sci. 64A, 629–635 (2009)

    Article  CAS  Google Scholar 

  110. Jeyabal, P.V.S., Kumar, R., Gangula, P.R.R., Micci, M.A., Pasricha, P.J.: Inhibitors of advanced glycation end-products prevent loss of enteric neuronal nitric oxide synthase in diabetic rats. Neurogastroenterol. Motil. 20, 253–261 (2008)

    Article  CAS  PubMed  Google Scholar 

  111. Zheng, Y., Li, X.-K., Wang, Y., Cai, L.: The Role of Zinc, Copper and Iron in the Pathogenesis of Diabetes and Diabetic Complications: Therapeutic Effects by Chelators. Hemoglobin 32, 135–145 (2008)

    Article  CAS  PubMed  Google Scholar 

  112. Tan, A.L.Y., Sourris, K.C., Harcourt, B.E., Thallas-Bonke, V., Penfold, S., Andrikopoulos, S., et al.: Disparate effects on renal and oxidative parameters following RAGE deletion, AGE accumulation inhibition, or dietary AGE control in experimental diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 298, F763–F770 (2010)

    Article  CAS  Google Scholar 

  113. Harcourt, B.E., Sourris, K.C., Coughlan, M.T., Walker, K.Z., Dougherty, S.L., Andrikopoulos, S., et al.: Targeted reduction of advanced glycation improves renal function in obesity. Kidney Int. 80, 190–198 (2011)

    Article  CAS  PubMed  Google Scholar 

  114. Tikellis, C., Thomas, M.C., Harcourt, B.E., Coughlan, M.T., Pete, J., Bialkowski, K., et al.: Cardiac inflammation associated with a Western diet is mediated via activation of RAGE by AGEs. Am. J. Physiol. Endocrinol. Metab. 295, E323–E330 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kass, D.A., Shapiro, E.P., Kawaguchi, M., Capriotti, A.R., Scuteri, A.: Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation (New York, N.Y.) 104, 1464–1470 (2001)

    CAS  Google Scholar 

  116. Pietropaolo, S.M.: Alteon (ALT) temporarily suspends enrollment of new patients in clinical trials of alagebrium pending additional preclinical data. ed. BioSpace, (2005).

  117. Bakris, G.L., Bank, A.J., Kass, D.A., Neutel, J.M., Preston, R.A., Oparil, S.: Advanced glycation end-product cross-link breakers: A novel approach to cardiovascular pathologies related to the aging process. Am. J. Hypertens. 17, 23S–30S (2004)

    Article  CAS  PubMed  Google Scholar 

  118. Little, W.C., Zile, M.R., Kitzman, D.W., Hundley, W.G., O’Brien, T.X., deGroof, R.C.: The Effect of Alagebrium Chloride (ALT-711), a Novel Glucose Cross-Link Breaker, in the Treatment of Elderly Patients With Diastolic Heart Failure. J. Card. Fail. 11, 191–195 (2005)

    Article  CAS  PubMed  Google Scholar 

  119. Zieman, S.J., Melenovsky, V., Clattenburg, L., Corretti, M.C., Capriotti, A., Gerstenblith, G., et al.: Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J. Hypertens. 25, 577–583 (2007)

    Article  CAS  PubMed  Google Scholar 

  120. Hartog, J.W.L., Willemsen, S., van Veldhuisen, D.J., Posma, J.L., van Wijk, L.M., Hummel, Y.M., et al.: Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur. J. Heart Fail. 13, 899–908 (2011)

    Article  CAS  PubMed  Google Scholar 

  121. Oudegeest-Sander, M.H., Rikkert, M.G.M.O., Smits, P., Thijssen, D.H.J., van Dijk, A.P.J., Levine, B.D., et al.: The effect of an advanced glycation end-product crosslink breaker and exercise training on vascular function in older individuals: A randomized factorial design trial. Exp. Gerontol. 48, 1509–1517 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fujimoto, N., Hastings, J.L., Carrick-Ranson, G., Shafer, K.M., Shibata, S., Bhella, P.S., et al.: Cardiovascular Effects of 1 Year of Alagebrium and Endurance Exercise Training in Healthy Older Individuals. Circ.: Heart Fail. 6, 1155–1164 (2013)

    CAS  Google Scholar 

  123. Tasaka, Y., Nakaya, F., Matsumoto, H., Omori, Y.: Effects of aminoguanidine on insulin release from pancreatic islets. Endocr. J. 41, 309–313 (1994)

    Article  CAS  PubMed  Google Scholar 

  124. Zahner, D., Malaisse, W.J.: Effects Of Advanced Glycation Products And Aminoguanidine Upon Insulin Release. Diabetes Nutr. Metab. 5, 43–46 (1992)

    Google Scholar 

  125. Tasaka, Y., Nakaya, H., Omori, Y.: Effects of aminoguanidine on glucagon and insulin release from rat pancreatic islet. Endocr. J. 43, 725–730 (1996)

    Article  CAS  PubMed  Google Scholar 

  126. Holstad, M., Jansson, L., Sandler, S.: Effects of aminoguanidine on rat pancreatic islets in culture and on the pancreatic islet blood flow of anaesthetized rats. Biochem. Pharmacol. 51, 1711–1717 (1996)

    Article  CAS  PubMed  Google Scholar 

  127. Kuttler, B., Steveling, A., Klöting, N., Morgenstern, O., Wanka, H.: Aminoguanidine downregulates expression of cytokine-induced Fas and inducible nitric oxide synthase but not cytokine-enhanced surface antigens of rat islet cells. Biochem. Pharmacol. 66, 2437–2448 (2003)

    Article  CAS  PubMed  Google Scholar 

  128. Piercy, V., Toseland, C.D.N., Turner, N.C.: Potential benefit of inhibitors of advanced glycation end products in the progression of type II diabetes: a study with aminoguanidine in C57/BLKsJ diabetic mice. Metab. Clin. Exp. 47, 1477–1480 (1998)

    Article  CAS  PubMed  Google Scholar 

  129. Corbett, J.A., Mikhael, A., Shimizu, J., Frederick, K., Misko, T.P., McDaniel, M.L., et al.: Nitric oxide production in islets from nonobese diabetic mice: aminoguanidine-sensitive and -resistant stages in the immunological diabetic process. Proc. Natl. Acad. Sci. U. S. A. 90, 8992–8995 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wu, G.: Nitric Oxide Synthesis and the Effect of Aminoguanidine and NG-monomethyl-L-Arginine on the Onset of Diabetes in the Spontaneously Diabetic BB Rat. Diabetes 44, 360–364 (1995)

    Article  CAS  PubMed  Google Scholar 

  131. Bowman, M.A., Simell, O.G., Peck, A.B., Cornelius, J., Luchetta, R., Look, Z., et al.: Pharmacokinetics of aminoguanidine administration and effects on the diabetes frequency in nonobese diabetic mice. J. Pharmacol. Exp. Ther. 279, 790–794 (1996)

    CAS  PubMed  Google Scholar 

  132. Hiramatsu, S., Inoue, K., Tajirl, Y., Grill, V.: Improvement by aminoguanidine of insulin secretion from pancreatic islets grafted to syngeneic diabetic rats. Biochem. Pharmacol. 60, 263–268 (2000)

    Article  CAS  PubMed  Google Scholar 

  133. Coughlan, M.T., Yap, F.Y.T., Tong, D.C.K., Andrikopoulos, S., Gasser, A., Thallas-Bonke, V., et al.: Advanced Glycation End Products Are Direct Modulators of β-Cell Function. Diabetes 60, 2523–2532 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Borg, D., Harcourt, B., Ward, M., Tom, L., Fotheringham, A., Mccarthy, D., et al.: Glycation lowering therapies differ in their mode of action in experimental autoimmune diabetes. In 74th Scientific Sessions American Diabetes Association San Francisco. p. A429, ( 2014).

Download references

Acknowledgments

DJB was supported by National Health and Medical Research Council of Australia (NHMRC) Project and Diabetes Australia Research Program Grants. JMF was supported by a NHMRC Senior Research Fellowship. This research was supported by the NHMRC, Mater Foundation and JDRF International. The authors would like to thank Dr Tim Dargaville for creating the chemical structures of the AGE inhibitors. We would also like to acknowledge Dr Linda Gallo, Mrs Nicole Flemming and Mr Aowen Zhang for their editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josephine M. Forbes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borg, D.J., Forbes, J.M. Targeting advanced glycation with pharmaceutical agents: where are we now?. Glycoconj J 33, 653–670 (2016). https://doi.org/10.1007/s10719-016-9691-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9691-1

Keywords

Navigation