Skip to main content
Log in

Summary of session C1: pulsar timing arrays

  • Review Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This paper summarizes parallel session C1: Pulsar Timing Arrays of the Amaldi10/GR20 Meeting held in Warsaw, Poland in July 2013. The session showcased recent results from pulsar timing array collaborations, advances in modelling the gravitational-wave signal, and new methods to search for and characterize gravitational waves in pulsar timing array observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sesana, A., Vecchio, A., Colacino, C.N.: The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with pulsar timing arrays. MNRAS 390, 192 (2008)

    Article  ADS  Google Scholar 

  2. Sesana, A.: Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band. MNRAS 433, 1 (2013)

    Article  ADS  Google Scholar 

  3. McConnell, N.J., Ma, C.-P.: Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys. J. 764, 184 (2013)

    Article  ADS  Google Scholar 

  4. Hlavacek-Larrondo, J., et al.: On the hunt for ultramassive black holes in brightest cluster galaxies. MNRAS 424, 224 (2012)

    Article  ADS  Google Scholar 

  5. Shannon, R.M., et al.: Gravitational-wave limits from pulsar timing constrain supermassive black hole evolution. Science 342, 334 (2013)

    Article  ADS  Google Scholar 

  6. van Haasteren, R., Levin, Y., McDonald, P., Lu, T.: On measuring the gravitational-wave background using pulsar timing arrays. MNRAS 395, 1005 (2009)

    Article  ADS  Google Scholar 

  7. Ölmez, S., Mandic, V., Siemens, X.: Gravitational-wave stochastic background from kinks and cusps on cosmic strings. Phys. Rev. D 81, 104028 (2010)

    Article  ADS  Google Scholar 

  8. Starobinskiǐ, A.A.: Spectrum of relict gravitational radiation and the early state of the universe. Sov. J. Exp. Theor. Phys. Lett. 30, 682 (1979)

    ADS  Google Scholar 

  9. Caprini, C., Durrer, R., Siemens, X.: Detection of gravitational waves from the QCD phase transition with pulsar timing arrays. Phys. Rev. D 82, 063511 (2010)

    Article  ADS  Google Scholar 

  10. Jaffe, A.H., Backer, D.C.: Gravitational waves probe the coalescence rate of massive black hole binaries. Astrophys. J. 583, 616 (2003)

    Article  ADS  Google Scholar 

  11. Sesana, A., Vecchio, A., Volonteri, M.: Gravitational waves from resolvable massive black hole binary systems and observations with pulsar timing arrays. MNRAS 394, 2255 (2009)

    Article  ADS  Google Scholar 

  12. Detweiler, S.: Pulsar timing measurements and the search for gravitational waves. Astrophys. J. 234, 1100 (1979)

    Article  ADS  Google Scholar 

  13. Hellings, R.W., Downs, G.S.: Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. 265, L39 (1983)

    Article  ADS  Google Scholar 

  14. Anholm, M., Ballmer, S., Creighton, J.D.E., Price, L.R., Siemens, X.: Optimal strategies for gravitational wave stochastic background searches in pulsar timing data. Phys. Rev. D 79, 084030 (2009)

    Article  ADS  Google Scholar 

  15. Wen, L., Chen, Y.: Geometrical expression for the angular resolution of a network of gravitational-wave detectors. Phys. Rev. D 81, 082001 (2010)

    Article  ADS  Google Scholar 

  16. Boyle, L., Pen, U.-L.: Pulsar timing arrays as imaging gravitational wave telescopes: angular resolution and source (de)confusion. Phys. Rev. D 86, 124028 (2012)

    Article  ADS  Google Scholar 

  17. Wen, L., Schutz, B.F.: Coherent network detection of gravitational waves: the redundancy veto. Class. Quantum Gravit. 22, 1321 (2005)

    Article  ADS  MATH  Google Scholar 

  18. Chatterji, S., et al.: Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise. Phys. Rev. D 74, 082005 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. Wen, L.: Data analysis of gravitational waves using a network of detectors. Int. J. Mod. Phys. D 17, 1095 (2008)

    Article  ADS  MATH  Google Scholar 

  20. Ellis, J.A.: A Bayesian analysis pipeline for continuous GW sources in the PTA band. Class. Quantum Gravit. 30, 224004 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ellis, J.A., Siemens, X., Creighton, J.D.E.: Optimal strategies for continuous gravitational wave detection in pulsar timing arrays. Astrophys. J. 756, 175 (2012)

    Article  ADS  Google Scholar 

  22. Manchester, R.N., et al.: The parkes pulsar timing array project. PASA 30, 17 (2013)

    Article  ADS  Google Scholar 

  23. Ferdman, R.D., et al.: The European pulsar timing array: current efforts and a LEAP toward the future. Class. Quantum Gravit. 27, 084014 (2010)

    Article  ADS  Google Scholar 

  24. Hobbs, G., et al.: The international pulsar timing array project: using pulsars as a gravitational wave detector. Class. Quantum Gravit 27, 084013 (2010)

    Article  ADS  Google Scholar 

  25. Demorest, P.B., et al.: Limits on the stochastic gravitational wave background from the North American nanohertz observatory for gravitational waves. Astrophys. J. 762, 94 (2013)

    Article  ADS  Google Scholar 

  26. Mingarelli, C.M.F., Sidery, T., Mandel, I., Vecchio, A.: Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays. Phys. Rev. D 88(8), 062005 (2013)

    Article  ADS  Google Scholar 

  27. Taylor, S.R., Gair, J.R.: Searching for anisotropic gravitational-wave backgrounds using pulsar timing arrays. Phys. Rev. D 88(8), 084001 (2013)

    Article  ADS  Google Scholar 

  28. van Haasteren, R.: Accelerating pulsar timing data analysis. Mon. Not. R. Astron. Soc. 429, 55–62 (2013)

    Article  ADS  Google Scholar 

  29. Ravi, V., Wyithe, J.S.B., Hobbs, G., et al.: Does a “stochastic” background of gravitational waves exist in the pulsar timing band? Astrophys. J. 761, 84 (2012)

    Article  ADS  Google Scholar 

  30. Hobbs, G.B., Edwards.: The Australia Telescope Compact Array (/ Parkes radio telescope / Mopra radio telescope / Long Baseline Array) is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. R. T., & Manchester, R. N. 2006, MNRAS, 369, 655

  31. Cornish, N.J., Sesana, A.: Pulsar timing array analysis for black hole backgrounds. Class. Quantum Gravit. 30, 224005 (2013)

    Article  ADS  MATH  Google Scholar 

  32. Corbin, V., Cornish, N.J.: Pulsar timing array observations of massive black hole binaries arXiv:1008.1782 (2010)

  33. Deng, X., Finn, L.S.: Pulsar timing array observations of gravitational wave source timing parallax. MNRAS 414, 50 (2011)

    Article  ADS  Google Scholar 

  34. Lee, K.J., et al.: Gravitational wave astronomy of single sources with a pulsar timing array. MNRAS 414, 3251 (2011)

    Article  ADS  Google Scholar 

  35. Rosado, P.A., Sesana, A.: Targeting supermassive black hole binaries and gravitational wave sources for the pulsar timing array. MNRAS, arXiv:1311.0883 (2013, submitted to)

  36. York, D.G., et al.: The sloan digital sky survey: technical summary. Astrophys. J. 120, 1579 (2000)

    Google Scholar 

  37. Abazajian, K., et al.: The seventh data release of the sloan digital sky survey. Astrophys. J. Suppl. 182, 543 (2009)

    Article  ADS  Google Scholar 

  38. Springel, V., et al.: Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629 (2005)

    Article  ADS  Google Scholar 

  39. Guo, Q., et al.: From dwarf spheroidals to cD galaxies: simulating the galaxy population in a \(\Lambda \)CDM cosmology. MNRAS 413, 101 (2011)

    Article  ADS  Google Scholar 

  40. Ellison, S.L., et al.: Galaxy pairs in the Sloan Digital Sky Survey- VIII. The observational properties of post-merger galaxies. MNRAS 435, 3627 (2013)

    Article  ADS  Google Scholar 

  41. Hobbs, G., et al.: Development of a pulsar-based time-scale. MNRAS 427, 2780 (2012)

    Article  ADS  Google Scholar 

  42. McWilliams, S.T., Ostriker, J.P., Pretorius, F.: Gravitational waves and stalled satellites from massive galaxy mergers at \(z \le 1\). arXiv:1211.5377 (2012)

Download references

Acknowledgments

LW acknowledges funding support from Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Shannon.

Additional information

This article belongs to the Topical Collection: The First Century of General Relativity: GR20/Amaldi10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shannon, R.M., Chamberlin, S., Cornish, N.J. et al. Summary of session C1: pulsar timing arrays. Gen Relativ Gravit 46, 1765 (2014). https://doi.org/10.1007/s10714-014-1765-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1765-4

Keywords

Navigation