Skip to main content
Log in

A2: Mathematical relativity and other progress in classical gravity theory—a session report

  • Review Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We report on selected oral contributions to the A2 session “Mathematical relativity and other progress in classical gravity theory” of “The 20th International Conference on General Relativity and Gravitation (GR20)” in Warsaw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, L., Mars, M., Metzger, J., Simon, W.: The time evolution of marginally trapped surfaces. Class. Quantum Gravity 26(14), 085018 (2009)

    Google Scholar 

  2. Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (2005). arXiv:gr-qc/0506013

    Google Scholar 

  3. Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12, 853–888 (2008). arXiv:0704.2889 [gr-qc]

  4. Andréasson, H., Kunze, M., Rein, G.: Existence of axially symmetric static solutions of the Einstein–Vlasov system. Commun. Math. Phys. 308, 23–47 (2011)

    Article  ADS  MATH  Google Scholar 

  5. Andréasson, H., Kunze, M., Rein, G.: Rotating, stationary, axially symmetric spacetimes with collisionless matter. Commun. Math. Phys. in press (2013)

  6. Aretakis, S.: Nonlinear instability of scalar fields on extremal black holes. Phys. Rev. D 87, 084052 (2013). arXiv:1304.4616 [gr-qc]

  7. Aretakis, S.: A note on instabilities of extremal black holes under scalar perturbations from afar. Class. Quantum Gravity 30(11), 095010 (2013). arXiv:1212.1103 [gr-qc]

  8. Bizoń, P., Chmaj, T., Schmidt, B.G.: Critical behavior in vacuum gravitational collapse in 4+1 dimensions. Phys. Rev. Lett. 95, 071102 (2005). arXiv:gr-qc/0506074

    Google Scholar 

  9. Bizoń, P., Rostworowski, A.: On weakly turbulent instability of anti-de Sitter space. Phys. Rev. Lett. 107, 031102 (2011). arXiv:1104.3702 [gr-qc]

    Google Scholar 

  10. Breitenlohner, P., Forgács, P., Maison, D.: Gravitating monopole solutions II. Nucl. Phys. B 442, 126–156 (1995)

    Article  ADS  MATH  Google Scholar 

  11. Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. 149(2), 183–217 (1999)

    Google Scholar 

  12. Chruściel, P.T.: Semi-global existence and convergence of solutions of the Robinson–Trautman (2-dimensional Calabi) equation. Commun. Math. Phys. 137, 289–313 (1991)

    Article  ADS  MATH  Google Scholar 

  13. Chruściel, P.T., Lopes Costa, J.: On uniqueness of stationary black holes. Astérisque 321, 195–265 (2008). arXiv:0806.0016v2 [gr-qc]

    Google Scholar 

  14. Chruściel, P.T., Lopes Costa, J., Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Rel. 15(7) (2012). arXiv:1205.6112 [gr-qc]

    Google Scholar 

  15. Chruściel, P.T., Galloway, G., Solis, D.: Topological censorship for Kaluza–Klein space-times. Ann. H. Poincaré 10, 893–912 (2009). arXiv:0808.3233 [gr-qc]

    Google Scholar 

  16. Chruściel, P.T., Galloway, G.J., Pollack, D.: Mathematical general relativity: a sampler. Bull. Am. Math. Soc. (N.S.) 47, 567–638 (2010). arXiv:1004.1016 [gr-qc]

    Google Scholar 

  17. Chruściel, P.T., Paetz, T.T.: Solutions of the vacuum Einstein equations with initial data on past null infinity. Class. Quantum Grav. 30, 2350237 (2013). arXiv:1307.0321 [gr-qc]

  18. Dafermos, M., Holzegel, G.: On the nonlinear stability of higher dimensional triaxial Bianchi-IX black holes. Adv. Theor. Math. Phys. 10(4), 503–523 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dilts, J.: The Einstein constraint equations on compact manifolds with boundary (2013). arXiv:1310.2303 [gr-qc]

  20. Figueras, P., Murata, K. Reall, H.S.: Black hole instabilities and local Penrose inequalities. Class. Quantum Gravity 28(22), 225030 (2011). arXiv:1107.5785 [gr-qc]

  21. Friedrich, H.: On the global existence and the asymptotic behavior of solutions to the Einstein–Maxwell–Yang–Mills equations. J. Diff. Geom. 34, 275–345 (1991)

    MATH  MathSciNet  Google Scholar 

  22. Friedrich, H.: Einstein equations and conformal structure: existence of anti-de-Sitter-type space–times. J. Geom. Phys. 17, 125–184 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Friedrich, H.: The Taylor expansion at past time-like infinity (2013). arXiv:1306.5626

  24. Friess, J.J., Gubser, S.S., Mitra, I.: Counter-examples to the correlated stability conjecture. Phys. Rev. D 72, 104019 (2005). arXiv:hep-th/0508220

  25. Galloway, G.J.: Maximum principles for null hypersurfaces and null splitting theorems. Ann. H. Poincaré 1, 543–567 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. García-Parrado, A.: Bi-conformal vector fields and the local geometric characterization of conformally separable pseudo-Riemannian manifolds. I. J. Geom. Phys. 56(7), 1069–1095 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. García-Parrado, A.: On the characterization of non-degenerate foliations of pseudo-riemannian manifolds with conformally flat leaves. J. Math. Phys. 54(6), 063503 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. Green, S.R., Schiffrin, J.S., Wald, R.M.: Dynamic and thermodynamic stability of relativistic. Perfect Fluid Stars (2013). arXiv:1309.0177 [gr-qc]

  29. Gubser, S.S., Mitra, I.: Instability of charged black holes in anti-de Sitter space (2000). arXiv:hep-th/0009126

  30. Hollands, S., Wald, R.M.: Stability of black holes and black Branes. Commun. Math. Phys. 321, 629–680 (2013). arXiv:1201.0463 [gr-qc]

  31. Holst, M., Meier, C., Tsogtgerel, G.: Non-CMC solutions of the Einstein constraint equations on compact manifolds with apparent horizon boundaries (2013). arXiv:1310.2302 [gr-qc]

  32. Jaramillo, J.L.: A note on degeneracy, marginal stability and extremality of black hole horizons. Class. Quantum Gravity 29, 177001 (2012). arXiv:1206.1271 [gr-qc]

  33. Jaramillo, J.L.: A Young–Laplace law for black hole horizons (2013). arXiv:1309.6593 [gr-qc]

  34. Klainerman, S.: PDE as a unified subject. Geom. Funct. Anal. Special Volume, Part I, 279–315 (2000)

  35. Klainerman, S., Rodnianski, I., Szeftel, J.: The bounded \(L^2\) curvature conjecture (2012). arXiv:1204.1767 [math.AP]

  36. Kozameh, C., Perez, A., Moreschi, O.: Smooth null hypersurfaces near the horizon in the presence of tails. Phys. Rev. D 87, 064039 (2013)

    Article  ADS  Google Scholar 

  37. Kunduri, H.K., Lucietti, J.: Classification of near-horizon geometries of extremal black holes. Living Rev. Relativ. 16, 8 (2013). arXiv:1306.2517 [hep.th]

  38. Li, C., Lucietti, J.: Uniqueness of extreme horizons in Einstein–Yang–Mills theory. Class. Quantum Gravity 30, 095017 (2013). arXiv:1302.4616 [hep-th]

  39. Lübbe, C., Valiente Kroon, J.A.: Anti de Sitter-like Einstein–Yang–Mills spacetimes, in preparation (2013)

  40. Lübbe, C., Valiente Kroon, J.A.: Spherically symmetric Anti-de Sitter-like instein-Yang-Mills (2013). arXiv:1403.2885 [gr-qc]

  41. Lucietti, J., Murata, K., Reall, H.S., Tanahashi, N.: On the horizon instability of an extreme Reissner–Nordstróm black hole. JHEP 1303, 035 (2013). arXiv:1212.2557 [gr-qc]

  42. Luk, J., Rodnianski, I.: Local propagation of impulsive gravitational waves (2012). arXiv:1209.1130

  43. Luk, J., Rodnianski, I.: Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein equations (2013). arXiv:1301.1072

  44. Maxwell, D.: Solutions of the Einstein constraint equations with apparent horizon boundaries. Commun. Math. Phys. 253, 561–583 (2005). arXiv:gr-qc/0307117

  45. Neugebauer, G., Hennig, J.: Stationary two-black-hole configurations: a non-existence proof. J. Geom. Phys. 62, 613–630 (2012). arXiv:1105.5830 [gr-qc]

    Google Scholar 

  46. Nolan, B.C., Winstanley, E.: On the existence of dyons and dyonic black holes in Einstein–Yang–Mills theory. Class. Quantum Gravity 29, 235024 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  47. Reall, H.S.: Higher dimensional black holes and supersymmetry. Phys. Rev. D 68, 024024 (2003). arXiv:hep-th/0211290

  48. Rein, G.: Static solutions of the spherically symmetric Vlasov–Einstein system (1993). arXiv:gr-qc/9304028

  49. Ringström, H.: On the Topology and Future Stability of the Universe. Oxford Mathematical Monographs. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  50. Tafel, J., Jóźwikowski, M.: New solutions of initial conditions in general relativity (2013). arXiv:1312.7819 [gr-qc]

  51. Weinberg, E.J.: Black holes with hair (2001). arXiv:gr-qc/0106030

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim-T. Paetz.

Additional information

Preprint UWThPh-2013-33.

This article belongs to the Topical Collection: The First Century of General Relativity: GR20/Amaldi10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chruściel, P.T., Paetz, TT. A2: Mathematical relativity and other progress in classical gravity theory—a session report. Gen Relativ Gravit 46, 1695 (2014). https://doi.org/10.1007/s10714-014-1695-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1695-1

Keywords

Navigation