Skip to main content
Log in

Stability study of a model for the Klein–Gordon equation in Kerr space-time

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The current early stage in the investigation of the stability of the Kerr metric is characterized by the study of appropriate model problems. Particularly interesting is the problem of the stability of the solutions of the Klein–Gordon equation, describing the propagation of a scalar field of mass \(\mu \) in the background of a rotating black hole. Rigorous results prove the stability of the reduced, by separation in the azimuth angle in Boyer–Lindquist coordinates, field for sufficiently large masses. Some, but not all, numerical investigations find instability of the reduced field for rotational parameters \(a\) extremely close to \(1\). Among others, the paper derives a model problem for the equation which supports the instability of the field down to \(a/M \approx 0.97\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. If not otherwise indicated, the symbols \(t,r,\theta ,\varphi \) denote coordinate projections whose domains will be obvious from the context. In addition, we assume the composition of maps, which includes addition, multiplication and so forth, always to be maximally defined. For instance, the sum of two complex-valued maps is defined on the intersection of their domains. Finally, we use Planck units where the reduced Planck constant \(\hbar \), the speed of light in vacuum \(c\), and the gravitational constant \(G\), all have the numerical value \(1\).

  2. See also the Section 5.1 on ‘Damped wave equations’ in [5].

  3. Since the solutions are scalable in \(M\) we will only present results for \(M=1\).

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Pocketbook of Mathematical Functions. Harri Deutsch, Thun (1984)

    MATH  Google Scholar 

  2. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime (2009). [arXiv:0908.2265v2]

  3. Beyer, H.R.: On the stability of the Kerr metric. Commun. Math. Phys. 221, 659–676 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Beyer, H.R.: A framework for perturbations and stability of differentially rotating stars. Proc. R. Soc. Lond. A. 458, 359–380 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Beyer, H.R.: Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations. In: Springer Lecture Notes in Mathematics 1898. Springer, Berlin (2007)

  6. Beyer, H.R., Craciun, I.: On a new symmetry of the solutions of the wave equation in the background of a Kerr black hole. Class. Quantum Gravit. 25, 135014 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  7. Beyer, H.R.: On the stability of the massive scalar field in Kerr space-time. J. Math. Phys. 52(1–21), 102502 (2011)

    Google Scholar 

  8. Boyer, R.H., Lindquist, R.W.: Maximal analytic extension of the Kerr metric. J. Math. Phys. 8, 265–281 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Cardoso, V., Dias, O.J.C., Lemos, J.P.S., Yoshida, S.: Black-hole bomb and superradiant instabilities. Phys. Rev. D 70, 44039 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  10. Cohen, J.M., Kegeles, L.S.: Constructive procedure for perturbations of spacetimes. Phys. Rev. D 19, 1641 (1979)

    Article  ADS  Google Scholar 

  11. Dafermos, M., Rodnianski, I.: A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds. Invent. Math. 185, 467–559 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Damour, T., Deruelle, N., Ruffini, R.: On quantum resonances in stationary geometries. Lett. Nuovo Cimento 15, 257 (1976)

    Article  ADS  Google Scholar 

  13. Detweiler, S.L.: Klein–Gordon equation and rotating black holes. Phys. Rev. D 22, 2323–2326 (1980)

    Article  ADS  Google Scholar 

  14. Dolan, S.R.: Instability of the massive Klein–Gordon field on the Kerr spacetime. Phys. Rev. D 76, 084001 (2007)

    Google Scholar 

  15. Finster, F., Kamran, N., Smoller, J., Yau, S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys. 264, 465–503 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Furuhashi, H., Nambu, Y.: Instability of massive scalar fields in Kerr–Newman spacetime. Prog. Theor. Phys. 112, 983–995 (2004)

    Article  ADS  MATH  Google Scholar 

  17. Hod, S., Hod, O.: Analytic treatment of the black-hole bomb. Phys. Rev. D 81, 061502 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  18. Hod, S.: On the instability regime of the rotating Kerr spacetime to massive scalar perturbations. Phys. Lett. B 708, 320–323 (2012)

    Article  ADS  Google Scholar 

  19. Strafuss, M.J., Khanna, G.: Massive scalar field instability in Kerr spacetime. Phys. Rev. D 71, 24034 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. Krivan, W., Laguna, P., Papadopoulos, P.: Dynamics of scalar fields in the background of rotating black holes. Phys. Rev. D 54, 4728–4734 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  21. Krivan, W., Laguna, P., Papadopoulos, P., Andersson, N.: Dynamics of perturbations of rotating black holes. Phys. Rev. D 56, 3395–3404 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  22. Konoplya, R.A., Zhidenko, A.: Stability and quasinormal modes of the massive scalar field around Kerr black holes. Phys. Rev. D 73, 124040 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  23. Markus, A.S.: Introduction to the Spectral Theory of Operator Pencils. AMS, Providence (1988)

    MATH  Google Scholar 

  24. Moncrief, V.: Gravitational perturbations of spherically symmetric systems. I. The exterior problem. Ann. Phys. 88, 323–342 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  25. Press, W.H., Teukolsky, S.: Perturbations of a rotating black hole. II. Dynamical stability of the Kerr metric. Astrophys. J. 185, 649–673 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  26. Reed, M., Simon, B.: Methods of Mathematical Physics, vol. I, II. Academic, New York (1980, 1975)

  27. Regge, T., Wheeler, J.A.: Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Rodman, L.: An Introduction to Operator Polynomials. Birkäuser, Basel (1989)

    Book  MATH  Google Scholar 

  29. Rosa, J.G.: The extremal black hole bomb. J High Energy Phys. JHEP06, 015 (2010)

  30. Teukolsky, S.A.: Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations. Astrophys. J. 185, 635–647 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  31. Weidmann, J.: Linear Operators in Hilbert Spaces. Springer, New York (1980)

    Book  MATH  Google Scholar 

  32. Whiting, B.F.: Mode stability of the Kerr black hole. J. Math. Phys. 30, 1301–1305 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Zerilli, F.J.: Tensor harmonics in canonical form for gravitational radiation and other applications. J. Math. Phys. 11, 2203 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  34. Zouros, T.J.M., Eardley, D.M.: Instabilities of massive scalar perturbations of a rotating black hole. Ann. Phys. 118, 139–155 (1979)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

H.B. is thankful for the hospitality and support of the ‘Department of Gravitation and Mathematical Physics’, (ICN, Miguel Alcubierre), Universidad Nacional Autonoma de Mexico, Mexico City, Mexico and the ‘Division for Theoretical Astrophysics’ (TAT, K. Kokkotas) of the Institute for Astronomy and Astrophysics at the Eberhard-Karls-University Tuebingen. This work was supported in part by CONACyT grants 82787 and 167335, DGAPA-UNAM through grant IN115311, SNI-México, and the SFB/Transregio 7 on “Gravitational Wave Astronomy” of the German Science Foundation (DFG). M.M. acknowledges DGAPA-UNAM for a postdoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Reinhard Beyer.

Appendix

Appendix

Lemma 6.1

Let \(\mu \in [0,\infty )\). By

$$\begin{aligned} g(\lambda ) := i \lambda + \left(\mu ^2 - \lambda ^2\right)^{1/2} \end{aligned}$$

for every \(\lambda \in \mathbb{R } \times (-\infty ,0)\), where \((\mu ^2 - \lambda ^2)^{1/2}\) denotes the square root with strictly positive real part, there is defined a biholomorphic map

$$\begin{aligned} g : \mathbb{R } \times (-\infty ,0) \rightarrow \left(\mathbb{C } \setminus B_{\mu }(0)\right) \cap \left((0,\infty ) \times \mathbb{R }\right) \end{aligned}$$

with inverse

$$\begin{aligned} g^{-1} : (\mathbb{C } \setminus B_{\mu }(0)) \cap \left((0,\infty ) \times \mathbb{R }\right) \rightarrow \mathbb{R } \times (-\infty ,0) \end{aligned}$$

given by

$$\begin{aligned} g^{-1}(z) = - \, \frac{i}{2z} \, \big (z^2 - \mu ^2\big ) \end{aligned}$$

for every \(z \in (\mathbb{C } \setminus B_{\mu }(0)) \cap ((0,\infty ) \times \mathbb{R })\). In addition,

$$\begin{aligned} \left[\mu ^2 - \left(g^{-1}(z)\right)^2 \right]^{1/2} = \frac{1}{2 z} \, \left(z^2 + \mu ^2\right) \end{aligned}$$

for every \(z \in (\mathbb{C } \setminus B_{\mu }(0)) \cap ((0,\infty ) \times \mathbb{R })\) (Fig. 5).

Fig. 5
figure 5

Sketch of domain and range of the map \(g\) from Lemma 6.1

Proof

First, we note that \(g\) is well-defined. For this, let \(\lambda \in \mathbb{R } \times (-\infty ,0)\) and \(\lambda _1 := \mathrm Re (\lambda ), \lambda _2 := \mathrm Im (\lambda ) < 0\). Then

$$\begin{aligned} \mu ^2 - \lambda ^2 = \mu ^2 - \lambda _1^2 + \lambda _2^2 - 2 i \lambda _1 \lambda _2. \end{aligned}$$

Hence \(\mu ^2 - \lambda ^2\) is real iff \(\lambda _1 = 0\). In the latter case,

$$\begin{aligned} \mathrm Re \,\left(\mu ^2 - \lambda ^2\right) = \mu ^2 + \lambda _2^2 > 0. \end{aligned}$$

Therefore, \(\mu ^2 - \lambda ^2 \in \mathbb{C } \setminus ((-\infty ,0] \times \{0\})\), and there is precisely one square root of \(\mu ^2 - \lambda ^2\) with strictly positive real part. Further,

$$\begin{aligned} \mathrm Re \,\left[\,i \lambda +\left(\mu ^2 - \lambda ^2\right)^{1/2}\,\right] = - \lambda _2 + \mathrm Re \, \left(\mu ^2 - \lambda ^2\right)^{1/2} > 0. \end{aligned}$$

In particular, if

$$\begin{aligned} z := i \lambda + \left(\mu ^2 - \lambda ^2\right)^{1/2} \end{aligned}$$

is such that \(|z| \le \mu \), then

$$\begin{aligned} z^2 - 2 i z \lambda - \lambda ^2 = (z - i \lambda )^2 = \mu ^2 - \lambda ^2. \end{aligned}$$

Hence

$$\begin{aligned} z^2 - \mu ^2 = 2 i z \lambda \end{aligned}$$

and

$$\begin{aligned} \lambda = - \frac{i}{2} \left(z - \frac{\mu ^2}{z}\right). \end{aligned}$$

The latter implies that

$$\begin{aligned} \lambda _2 = \mathrm{Im } \lambda = - \frac{\mathrm{Re }(z)}{2} \left( 1 - \frac{\mu ^2}{|z|^2} \right) \end{aligned}$$

and hence that \(\mathrm Re (z) \le 0\). As a consequence, \(|z| > \mu \).

For the second step, let \(z \in (\mathbb{C } \setminus B_{\mu }(0)) \cap ((0,\infty ) \times \mathbb{R })\), \(x := \mathrm Re (z),\) and \(y := \mathrm Im (z)\). Then

$$\begin{aligned}&- \frac{i}{2} \left(z - \frac{\mu ^2}{z}\right) = - \frac{i}{2} \left(x + iy - \frac{\mu ^2}{x+iy} \right) = - \frac{i}{2} \left[x + iy - \frac{\mu ^2}{|z|^2} \, (x-iy) \right] \\&\quad = \frac{1}{2} \left[y \left(1 + \frac{\mu ^2}{|z|^2}\right) - i x \left(1 - \frac{\mu ^2}{|z|^2}\right) \right] \in \mathbb{R } \times (-\infty ,0) \end{aligned}$$

and

$$\begin{aligned} g\left(- \frac{i}{2} \left(z - \frac{\mu ^2}{z}\right) \right)&= \frac{1}{2} \left(z - \frac{\mu ^2}{z}\right) + \left[\mu ^2 + \frac{1}{4} \left(z - \frac{\mu ^2}{z}\right)^2\right]^{1/2} \\&= \frac{1}{2} \left(z - \frac{\mu ^2}{z}\right) + \left[ \frac{1}{4} \left(z + \frac{\mu ^2}{z}\right)^2 \right]^{1/2}. \end{aligned}$$

Since

$$\begin{aligned} \frac{1}{2} \left(z + \frac{\mu ^2}{z}\right)&= \frac{1}{2} \left[x + iy + \frac{\mu ^2}{|z|^2} \, (x-iy) \right] \\&= \frac{1}{2} \left[x \left(1 + \frac{\mu ^2}{|z|^2}\right) + iy \left(1 - \frac{\mu ^2}{|z|^2}\right)\right] \in (0,\infty ) \times \mathbb{R }, \end{aligned}$$

the latter implies that

$$\begin{aligned} g\left(- \frac{i}{2} \left(z - \frac{\mu ^2}{z}\right) \right)&= \frac{1}{2} \left(z - \frac{\mu ^2}{z}\right) + \left[ \frac{1}{4} \left(z + \frac{\mu ^2}{z}\right)^2 \right]^{1/2} \\&= \frac{1}{2} \left(z - \frac{\mu ^2}{z}\right) + \frac{1}{2} \left(z + \frac{\mu ^2}{z}\right) = z. \end{aligned}$$

In particular, we conclude that by

$$\begin{aligned} h(z) := - \, \frac{i}{2} \left(z - \frac{\mu ^2}{z} \right) = - \frac{i}{2z}\, \left(z^2 - \mu ^2\right) \end{aligned}$$

for every \(z \in (\mathbb{C } \setminus B_{\mu }(0)) \cap ((0,\infty ) \times \mathbb{R })\), there is defined a map

$$\begin{aligned} h : (\mathbb{C } \setminus B_{\mu }(0)) \cap \left((0,\infty ) \times \mathbb{R }\right) \rightarrow \mathbb{R } \times (-\infty ,0) \end{aligned}$$

such that

$$\begin{aligned} (g \circ h)(z) = z \end{aligned}$$

for every \(z \in (\mathbb{C } \setminus B_{\mu }(0)) \cap ((0,\infty ) \times \mathbb{R })\). Therefore, \(g\) is surjective.

Further, if \(\mu = 0\),

$$\begin{aligned} (h \circ g)(\lambda ) = - \, \frac{i}{2} \, \left[\, i \lambda + \left(- \lambda ^2\right)^{1/2}\,\right] = - \, \frac{i}{2} \, \left(\, i \lambda + i \lambda \, \right) = \lambda \end{aligned}$$

and if \(\mu \ne 0\),

$$\begin{aligned} (h \circ g)(\lambda )&= - \, \frac{i}{2} \left[ i \lambda + \left(\mu ^2 - \lambda ^2\right)^{1/2} - \frac{\mu ^2}{i \lambda + \left(\mu ^2 - \lambda ^2\right)^{1/2}} \right] \\&= - \, \frac{i}{2} \left[i \lambda + \left(\mu ^2 - \lambda ^2\right)^{1/2} - \mu ^2 \, \frac{i \lambda - \left(\mu ^2 - \lambda ^2\right)^{1/2}}{-\lambda ^2 - \left(\mu ^2 - \lambda ^2\right)} \right] \\&= - \, \frac{i}{2} \left[i \lambda + \left(\mu ^2 - \lambda ^2\right)^{1/2} + i \lambda - \left(\mu ^2 - \lambda ^2\right)^{1/2}\right] = \lambda \end{aligned}$$

for every \(\lambda \in \mathbb{R } \times (-\infty ,0)\). Therefore, \(g\) is injective and altogether bijective with inverse \(h\). Finally, it follows for \(\lambda \in \mathbb{R } \times (-\infty ,0)\) that

$$\begin{aligned}&-\! \left(\mu ^2 - \lambda ^2\right)^{1/2} = i \lambda - g(\lambda ) = i h(g(\lambda )) - g(\lambda ) = - i \, \frac{i}{2} \left(g(\lambda ) - \frac{\mu ^2}{g(\lambda )} \right) - g(\lambda ) \\&= - \frac{1}{2} \left(g(\lambda ) + \frac{\mu ^2}{g(\lambda )} \right) = - \frac{1}{2 g(\lambda )} \, \left[(g(\lambda ))^2 + \mu ^2\right] \end{aligned}$$

and hence for every \(z \in (\mathbb{C } \setminus B_{\mu }(0)) \cap ((0,\infty ) \times \mathbb{R })\) that

$$\begin{aligned} \left[\mu ^2 - \left(g^{-1}(z)\right)^2\right]^{1/2} = \frac{1}{2 z} \, \left(z^2 + \mu ^2\right). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyer, H.R., Alcubierre, M., Megevand, M. et al. Stability study of a model for the Klein–Gordon equation in Kerr space-time. Gen Relativ Gravit 45, 203–227 (2013). https://doi.org/10.1007/s10714-012-1470-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1470-0

Keywords

Navigation