Skip to main content
Log in

Dyonic Kerr–Newman black holes, complex scalar field and cosmic censorship

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We construct a gedanken experiment, in which a weak wave packet of the complex massive scalar field interacts with a four-parameter (mass, angular momentum, electric and magnetic charges) Kerr–Newman black hole. We show that this interaction cannot convert an extreme the black hole into a naked sigularity for any black hole parameters and any generic wave packet configuration. The analysis therefore provides support for the weak cosmic censorship conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Penrose, R.: Gravitational collapse: the role of general relativity, Riv. Nuovo Cimento 1, special number, pp. 252–276 (1969)

  2. Penrose R.: Singularities and time-asymmetry. In: Wald, R.M. (ed.) General Relativity: an Einstein Centenary Survey, pp. 581–638. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  3. Wald, R.M.: Gravitational collapse and cosmic censorship. arXiv:gr-qc/9710068

  4. Penrose R.: The question of cosmic censorship. In: Hawking, S.W., Israel, W. (eds) Black Holes and Relativistic Stars, pp. 103–122. The University of Chicago Press, Chicago (1998)

    Google Scholar 

  5. Joshi P.S.: Cosmic censorship: a current perspective. Modern Phys. Lett. A 17, 1067–1079 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Mazur P.O.: Proof of uniqueness of the Kerr–Newman black hole solution. J. Phys. A 15, 3173–3180 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Bunting, G.: Ph.D. Thesis (unpublished), Univ. New England (1983)

  8. Mazur, P.O.: Black hole uniqueness theorems in MacCallum, M. A. H. (ed.) Proceedings of the 11th International Conference on General Relativity and Gravitation, pp.130–157. Cambridge University Press, Cambridge (1987) Also arXiv:hep-th/0101012

  9. Wald R.M.: Gedanken experiments to destroy a black hole. Ann. Phys. 82, 548–556 (1974)

    Article  ADS  Google Scholar 

  10. Semiz İ.: Dyon black holes do not violate cosmic censorship. Class. Quantum Grav. 7, 353–359 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  11. Hiscock W.A.: Magnetic charge, black holes and cosmic censorship. Ann. Phys. 131, 245–268 (1981)

    Article  ADS  Google Scholar 

  12. Bekenstein J.D., Rosenzweig C.: Stability of the black hole horizon and the Landau ghost. Phys. Rev. D 50, 7239–7243 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  13. Hod S.: Black-hole polarization and cosmic censorship. Phys. Rev. D 60, 104031 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  14. Ford L.H., Roman T.A.: ‘Cosmic flashing’ in four dimensions. Phys. Rev. D 46, 1328–1339 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  15. Jensen B.: Stability of black hole event horizons. Phys. Rev. D 51, 5511–5516 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  16. Hubeny V.E.: Overcharging a black hole and cosmic censorship. Phys. Rev. D 59, 064013 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  17. Hod S.: Cosmic censorship, area theorem, and self-energy of particles. Phys. Rev. D 66, 024016 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  18. Jacobson T., Sotiriou T.P.: Over-spinning a black hole with a test body. Phys. Rev. Lett. 103, 141101 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  19. Jacobson T., Sotiriou T.P.: Over-spinning a black hole with a test body. Phys. Rev. Lett. 103, 209903 (2009) (Erratum)

    Article  MathSciNet  ADS  Google Scholar 

  20. Hod S., Piran T.: Cosmic Censorship: the role of Quantum Gravity. Gen. Relativ. Gravit. 12, 2333–2338 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  21. de Felice F., Yunqiang Yu.: Turning a black hole into a naked singularity. Class. Quant. Grav. 18, 1235–1244 (2001)

    Article  MATH  ADS  Google Scholar 

  22. Matsas G.E.A., da Silva A.R.R.: Overspinning a Nearly Extreme Charged Black Hole via a Quantum Tunneling Process. Phys. Rev. Lett. 99, 181301 (2007)

    Article  ADS  Google Scholar 

  23. Matsas G.E.A., Richartz M., Saa A., da Silva A.R.R., Vanzella D.A.T.: Can quantum mechanics fool the cosmic censor?. Phys. Rev. D 79, 101502(R) (2009)

    Article  ADS  Google Scholar 

  24. Hod S.: Weak cosmic censorship: as strong as ever. Phys. Rev. Lett. 100, 121101 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  25. Hod S.: Return of the quantum cosmic censor. Phys. Lett. B 668, 346–349 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  26. Bouhmadi-López M., Cardoso V., Nerozzi A., Rocha J.V.: Black holes die hard: can one spin up a black hole past extremality?. Phys. Rev. D 81, 084051 (2010)

    Article  ADS  Google Scholar 

  27. Wang B., Su R.K., Yu P.K.N., Young E.C.M.: Can a nonextremal Reissner-Nordström black hole become extremal by assimilating an infalling charged particle and shell?. Phys. Rev. D 57, 5284–5286 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  28. Hawking S.W., Horowitz G.T., Ross S.F.: Entropy, area, and black hole pairs. Phys. Rev. D 51, 4302–4314 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  29. ‘t Hooft G.: The scattering matrix approach for the quantum black hole: an overview. Int. J. Mod. Phys. A 11, 4623–4688 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Shapiro S.L., Teukolsky S.A.: Formation of naked singularities: the violation of cosmic censorship. Phys. Rev. Lett. 66, 994–997 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. Freeman, New York (1973)

    Google Scholar 

  32. Wu T.T., Yang C.N.: Dirac monopole without strings: Monopole harmonics. Nucl. Phys. B 107, 365–380 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  33. Semiz İ.: Klein–Gordon equation is separable on the dyon black-hole metric. Phys. Rev. D 45, 532–533 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  34. Semiz İ.: Klein–Gordon equation is separable on the dyon black-hole metric. Phys. Rev. D 47, 5615 (1993) (Erratum)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Semiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semiz, İ. Dyonic Kerr–Newman black holes, complex scalar field and cosmic censorship. Gen Relativ Gravit 43, 833–846 (2011). https://doi.org/10.1007/s10714-010-1108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-1108-z

Keywords

Navigation