Skip to main content

Advertisement

Log in

Combined Gravimetric–Seismic Crustal Model for Antarctica

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz’s inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48–50 km) and the Kottas Mountains (48–50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34–38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24–28 km), while in West Antarctica the Moho depth minima are along the West Antarctic Rift System under the Bentley depression (20–22 km) and Ross Sea Ice Shelf (16–24 km). The gravimetric result confirmed a maximum extension of the Antarctic continental margins under the Ross Sea Embayment and the Weddell Sea Embayment with an extremely thin continental crust (10–20 km).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adams RD (1971) Reflections from discontinuities beneath Antarctica. Bull Seismol Soc Am 5:1441–1451

    Google Scholar 

  • Agostinetti P, Roselli P, Cattaneo M, Amato A (2005) Moho-depth and subglacial sedimentary layer thickness in the Wilkes Basin from Receiver Function Analysis. IASPEI. General Assembly, October 2.9, 2005, Chile, Abstracts Volume, pp 281–284

  • Airy GB (1885) On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys. Philos Trans R Soc Lond 145:101–104

    Article  Google Scholar 

  • Alley RB, Blankenship DD, Bentley CR (1987) Till beneath ice stream B. J Geophys Res 92(89):8921–8929

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA, Technical memorandum, NESDIS, NGDC-24

  • An M, Wiens DA, Zhao Y, Feng M, Nyblade AA, Kanao M, Li Y, Maggi A, Lévêque J-J (2015) S-velocitymodel and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves. J Geophys Res Solid Earth 120:359–383

    Article  Google Scholar 

  • Anandakrishnan S, Blankenship DD, Alley RB, Stoffa PL (1998) Influence of subglacial geology on the position of a West Antarctica ice stream from seismic measurements. Nature 394:62–65

    Article  Google Scholar 

  • Bagherbandi M, Sjöberg LE (2012) Non-isostatic effects on crustal thickness: a study using CRUST2.0 in Fennoscandia. Phys Earth Planet Inter 200–201:37–44

    Article  Google Scholar 

  • Bagherbandi M, Tenzer R, Sjöberg LE, Novák P (2013) Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction. J Geodyn 66:25–37

    Article  Google Scholar 

  • Bagherbandi M, Tenzer R, Abrehdary M, Sjöberg LE (2015) A New Fennoscandian crustal thickness model based on CRUST1.0 and gravimetric isostatic approach. Earth-Sci Rev 145:132–145

    Article  Google Scholar 

  • Bamber JL, Ferraccioli F, Joughin I, Shepherd T, Rippin DM, Sigert MJ, Vaughan DG (2006) East Antarctic ice stream tributary underlain by major sedimentary basin. Geology 34(1):33–36

    Article  Google Scholar 

  • Bannister S, Yu J, Leitner B, Kennett BLN (2003) Variations in crustal structure across the transition from West to East Antarctica Southern Victoria Land. Geophys J Int 155:870–884

    Article  Google Scholar 

  • Baranov A (2010) A new crustal model for Central and Southern Asia. Izvest Phys Solid Earth 46:34–46

    Article  Google Scholar 

  • Baranov A, Bobrov A (2017) The structure and properties of Archean cratons of the southern continents: similarities and differences. Russ Geol Geophys (in press)

  • Baranov A, Morelli A (2013) The Moho depth map of the Antarctica region. Tectonophysics 609:299–313

    Article  Google Scholar 

  • Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:F897

    Google Scholar 

  • Behrendt JC, LeMasurier WE, Cooper AK, Tessensohn F, Trehu A, Damaske D (1991) Geophysical studies of the West Antarctic rift system. Tectonics 10(6):1257–1273

    Article  Google Scholar 

  • Bell RE, Blankenship DD, Finn CA, Morse DL, Scambos TA, Brozena JM, Hodge SM (1998) Influence of subglacial geology on the onset of a West Antarctic ice stream from aerogeophysical observations. Nature 394:58–62

    Article  Google Scholar 

  • Bentley CR (1991) Configuration and structure of the subglacial crust. In: Tingey RJ (ed) The geology of Antarctica. Clarendon Press, Oxford, pp 335–364

  • Bentley CR, Ostenso NA (1962) On the paper of F.F. Evison, C.E. Ingram, R.H. Orr, and J.H. LeFort (1962) Thickness of the Earth’s crust in Antarctica and surrounding oceans. Geophys J R Astron Soc 6:292–298

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. doi:10.1029/2001GC000252

    Article  Google Scholar 

  • Blankenship D, Bentley C, Rooney ST, Alley RB (1986) Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream. Nature 322:54–57

    Article  Google Scholar 

  • Blankenship D, Bell RE, Hodge SM, Brozena JM, Behrendt JC, Finn CA (1993) Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability. Nature 361:526–528

    Article  Google Scholar 

  • Block AE, Bell RE, Studinger M (2009) Antarctic crustal thickness from satellite gravity: implications for the Transantarctic and Gamburtsev Subglacial Mountains. Earth Planet Sci Lett 288(1–2):194–203

    Article  Google Scholar 

  • Bowin C, Scheer E, Smith W (1986) Depth estimates from ratio of gravity, geoid and gravity gradient anomalies. Geophysics 51(1):123–136

    Article  Google Scholar 

  • Brocher TM (2005) Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull Seismol Soc Am 95(6):2081–2092

    Article  Google Scholar 

  • Cande SC, Stock JM, Müller RD, Ishihara T (2000) Cenozoic motion between East and West Antarctica. Nature 404:145–150

    Article  Google Scholar 

  • Chaput J, Aster RC, Huerta A, Sun X, Lloyd A, Wiens D, Nyblade A, Anandakrishnan S, Winberry JP, Wilson T (2014) The crustal thickness of West Antarctica. J Geophys Res Solid Earth. doi:10.1002/2013JB010642

    Google Scholar 

  • Chen W, Tenzer R, Gu X (2014) Sediment stripping correction to marine gravity data. Mar Geod 37(4):419–439

    Article  Google Scholar 

  • Clow G, Cuffey K, Waddington E (2012) High heat-flow beneath the central portion of the West Antarctic ice sheet. Eos Trans AGU, Fall Meet. Suppl

  • Cutnell JD, Kenneth WJ (1995) Physics, 3rd edn. Wiley, New York

    Google Scholar 

  • Dalziel IWD (1992) Antarctica: a tale of two supercontinents. Annu Rev Earth Planet Sci 20:501–526

    Article  Google Scholar 

  • Dalziel IWD, Elliot DH (1982) West Antarctica; problem child of Gondwanaland. Tectonics 1(1):3–19

    Article  Google Scholar 

  • Danesi S, Morelli A (2001) Structure of the upper mantle under the Antarctic Plate from surface wave tomography. Geophys Res Lett 28(23):4395–4398

    Article  Google Scholar 

  • Dewart GM, Toksoz MN (1965) Crustal structure in East Antarctica from surface wave dispersion. Geophys J R Astron Soc 10:127–139

    Article  Google Scholar 

  • Eckhardt DH (1983) The gains of small circular, square and rectangular filters for surface waves on a sphere. Bull Géod 57:394–409

    Article  Google Scholar 

  • Eshagh M (2016) A theoretical discussion on Vening Meinesz-Moritz inverse problem of isostasy. Geophys J Int 207:1420–1431

    Article  Google Scholar 

  • Evison FF, Ingham CE, Orr RH, Le Fort JH (1960) Thickness of the earth’s crust in Antarctica and the surrounding oceans. Geophys J R Astron Soc 3:289–306

    Article  Google Scholar 

  • Fedorov LV, Grikurov GE, Kurinin RG, Masolov VN (1982) Crustal structure of the Lambert Glacier area from geophysical data. In: Craddock C (ed) Antarctic geoscience. Univ. of Wisconsin Press, Madison, pp 931–936

    Google Scholar 

  • Ferraccioli F, Finn CA, Jordan TA, Bell RE, Anderson LM, Damaske D (2011) East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature 479:388–392

    Article  Google Scholar 

  • Filina I, Blankenship D, Thoma M, Lukin VV, Masolov VN, Sen MK (2008) New 3D bathymetry and sediment distribution in Lake Vostok: implication for pre-glacial origin and numerical modeling of the internal processes within the lake. Earth Planet Sci Lett 276(1–2):106–114

    Article  Google Scholar 

  • Forsberg R, Olesen AV, Yidiz H, Tscherning CC (2011) Polar gravity fields from GOCE and airborne gravity. In: Proceedings of 4th international GOCE user workshop European Space Agency, ESA

  • Forsyth SW, Ehrenbarda RL, Chapin S (1987) Anomalous upper mantle beneath the Australian-Antarctic discordance. Earth Planet Sci Lett 84:471–478

    Article  Google Scholar 

  • Frederick BC, Young DA, Blankenship DD, Richter TG, Kempf SD, Ferraccioli F, Siegert MJ (2016) Distribution of subglacial sediments across the Wilkes Subglacial Basin, East Antarctica. J Geophys Res Earth Surf 121(4):790–813

    Article  Google Scholar 

  • Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr HFJ, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs JA, Hindmarsh RCA, Holmlund P, Holt JW, Jacobel RW, Jenkins A, Jokat W, Jordan T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley KA, Leitchenkov G, Leuschen C, Luyendyk BP, Matsuoka K, Mouginot J, Nitsche FO, Nogi Y, Nost OA, Popov SV, Rignot E, Rippin DM, Rivera A, Roberts J, Ross N, Siegert MJ, Smith AM, Steinhage D, Studinger M, Sun B, Tinto BK, Welch BC, Wilson D, Young DA, Xiangbin C, Zirizzotti A (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375–393

    Article  Google Scholar 

  • Gladkikh V, Tenzer R (2011) A mathematical model of the global ocean saltwater density distribution. Pure Appl Geophys 169(1–2):249–257

    Google Scholar 

  • Golynsky AV, Aleshkova ND (1997) Regional magnetic anomalies of the Weddell Sea Region and their geological significance. Polarforschung 67(3):101–117

    Google Scholar 

  • Grad M, Guterch A, Janik T (1993) Seismic structure of the lithosphere across the zone of subducted Drake plate under the Antarctic plate, West Antarctica. Geophys J Int 115:586–600

    Article  Google Scholar 

  • Grad M, Tiira T, ESC Working Group (2009) The Moho depth map of the European Plate. Geophys J Int 176:279–292

    Article  Google Scholar 

  • Groushinsky AN, Groushinsky NP, Stroev PA, Yatsenko EV (1992) The Earth’s crust in Antarctica and the effective relief of the continent. J Geodyn 15:223–228

    Article  Google Scholar 

  • Hansen S, Nyblade A, Pyle M, Wiens D, Anandakrishnan S (2009) Using S wave receiver functions to estimate crustal structure beneath ice sheets: an application to the Transantarctic Mountains and East Antarctic craton. Geochem Geophys Geosyst 10:Q08014

    Article  Google Scholar 

  • Hansen S, Nyblade A, Heeszel D, Wiens D, Shore P, Kanao M (2010) Crustal structure of the Gamburtsev Mountains, East Antarctica, from S-wave receiver functions and Rayleigh wave phase velocities. Earth Planet Sci Lett 300:395–401

    Article  Google Scholar 

  • Heiskanen WH, Moritz H (1967) Physical geodesy. Freeman W.H. and Co, San Francisco

    Google Scholar 

  • Hinze WJ (2003) Bouguer reduction density, why 2.67? Geophysics 68(5):1559–1560

    Article  Google Scholar 

  • Hole MJ, LeMasurier WE (1994) Tectonic controls on the geochemical composition of Cenozoic alkali basalts from West Antarctica. Contrib Miner Petrol 117:187–202

    Article  Google Scholar 

  • Huebscher C, Jokat W, Miller H (1996) Structure and origin of southern Weddell Sea crust: results and implications. In: Storey BC, King EC, Livermore RA (eds) Weddell Sea tectonics and Gondwana break-up: Geology Society, London, Spec. Publ., vol 108, pp 201–212

  • Hungeling A, Tyssen F (1991) Reflection seismic measurements in western Neuschwabenland. In: Thornson MRA, Crame JA, Thomson JW (eds) Geological evolution of Antarctica. Proceedings of the fifth international symposium on Antarctic Earth Sciences, Robinson College, Cambridge, Cambridge University Press, Cambridge, UK, p 73

  • Isanina E, Krupnova N, Popov S, Masolov V, Lukin V (2009) Deep structure of the Vostok Basin, East Antarctica as deduced from seismological observations. Geotektonika 3:45–50

    Google Scholar 

  • Ito K, Ikami A (1986) Crustal structure of the Mizuho Plateau, East Antarctica, from geophysical data. J Geodyn 6:285–296

    Article  Google Scholar 

  • Jacobs J, Elburg M, Läufer AL, Kleinhanns IC, Henjes-Kunst F, Estrada S, Ruppel AS, Damaske D, Montero P, Bea F (2015) Two distinct Late Mesoproterozoic/Early Neoproterozoic basement provinces in central/eastern Dronning Maud Land, East Antarctica: the missing link, 15–21°E. Precamb Res 265:249–272

    Article  Google Scholar 

  • Johnson CL, Solomon SC, Head JW, Phillips RJ, Smith DE, Zuber MT (2000) Lithospheric loading by the north polar cap of Mars. Icarus 144:313–328

    Article  Google Scholar 

  • Jordan TA, Ferraccioli F, Vaughan DG, Holt JW, Corr H, Blankenship DD, Diehl TM (2010) Aerogravity evidence for major crustal thinning under the Pine Island Glacier region (West Antarctica). Geol Soc Am Bull 122:714–726

    Article  Google Scholar 

  • Jordan TA, Ferraccioli F, Armadillo E, Bozzo E (2013) Crustal architecture of the Wilkes Subglacial Basin in East Antarctica, as revealed from airborne gravity data. Tectonophysics 585:196–206

    Article  Google Scholar 

  • Kalberg T, Gohl K (2014) The crustal structure and tectonic development of the continental margin of the Amundsen Sea Embayment, West Antarctica: implications from geophysical data. Geophys J Int 198:327–341

    Article  Google Scholar 

  • Kanao M, Fujiwara A, Miyamachi H, Toda S, Tomura M, Ito K, Ikawa T (2011) Reflection imaging of the crust and the lithospheric mantle in the Lützow-Holm Complex, Eastern Dronning Maud Land, Antarctica, derived from the SEAL Transects. Tectonophysics 508:73–84

    Article  Google Scholar 

  • Karner GD, Studinger M, Bell RE (2005) Gravity anomalies of sedimentary basins and their mechanical implications: application to the Ross Sea basins, West Antarctica. Earth Planet Sci Lett 235:577–596

    Article  Google Scholar 

  • Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the earth from travel times. Geophys J Int 122:108–124

    Article  Google Scholar 

  • Kiele J, Marshall DL, Kyle PR, Kaminuma K, Shibuya K, Dibble RR (1983) Volcanic activity associated and seismicity of Mount Erebus 1982–1983. Antarct J US 18:41–44

    Google Scholar 

  • Knopoff L, Vane G (1978) Age of East Antarctica from surface wave dispersion. Pure Appl Geophys 117:806–816

    Article  Google Scholar 

  • Kobayashi R, Zhao D (2004) Rayleigh wave group velocity distribution in the Antarctic region. Phys Earth Planet Int 141:167–181

    Article  Google Scholar 

  • Kogan A (1971) First experience in crustal investigation for Antarctica by deep seismic sounding. Russ J Geol Geophys 10:84–89 (in Russian)

    Google Scholar 

  • Kogan AL (1972) Results of deep seismic soundings of the earth’s crust in East Antarctica. In: Adie RJ (ed) Antarctic geology and geophysics. Universitetsforlag, Oslo, pp 485–489

    Google Scholar 

  • Kolmakov AF, Mishenkin BP, Solovyev DS (1975) Deep seismic studies in East Antarctica. Bull Soviet Antarc Exped 5–15 (in Russian)

  • Kovach RL, Press F (1961) Surface wave dispersion and crustal structure in Antarctica and the surrounding oceans. Ann Geofis 14:211–224

    Google Scholar 

  • Kudryavtzev G, Butzenko V, Kadmina I (1991) Crustal section across western Dronning Maud Land continental margin from geophysical data. In: Yoshida Y, Kaminuma K, Shiraishi K (eds) Proceedings of the sixth international symposium on Antarctic Earth Science, Abstracts. National Institute for Polar Research, Tokyo, pp 330–335

  • Laske G, Masters G, Ma Z, Pasyanos ME (2013) Update on CRUST1.0—A 1-degree global model of Earth’s crust. Geophys Res Abstr 15:2658

    Google Scholar 

  • Lawrence JF, Wiens DA, Nyblade A, Anandakrishnan S, Shore PJ, Voigt D (2006) Crust and upper mantle structure of the Transantarctic Mountains and surrounding regions from receiver functions, surface waves, and gravity: implications for uplift models. Geochem Geophys Geosyst 7

  • Leitchenkov G, Kudryavtzev G (1997) Structure and origin of the Earth’s Crust in the Weddell Sea Embayment (beneath the Front of the Filehner and Ronne lee Shelves) from deep seismic sounding data. Polarforschung 67(3):143–154

    Google Scholar 

  • Lloyd S, van der Lee S, França GS, Assumpção M, Feng M (2010) Moho map of South America from receiver functions and surface waves. J Geophys Res 115:B11315

    Article  Google Scholar 

  • Llubes M, Florsch N, Legresy B, Lemoine JM, Loyer S, Crossley D, Remy F (2003) Crustal thickness in Antarctica from CHAMP gravimetry. Earth Planet Sci Lett 212:103–117

    Article  Google Scholar 

  • Lythe MB, Vaughan DG, BEDMAP Consortium (2001) BEDMAP; a new ice thickness and subglacial topographic model of Antarctica. J Geophys Res B Solid Earth Planets 106(6):11335–11351

    Article  Google Scholar 

  • Marschall HR, Hawkesworth C, Leat PT (2013) Mesoproterozoic subduction under the eastern edge of the Kalahari-Grunehogna Craton preceding Rodinia assembly: the Ritscherflya detrital zircon record, Ahlmannryggen (Dronning Maud Land, Antarctica). Precamb Res 236:31–45

    Article  Google Scholar 

  • Mayer-Gürr T, Rieser D, Höck E, Brockmann JM, Schuh W-D, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. Abstract submitted to GGHS2012, Venice

  • Mayer-Gürr T, Pail R, Gruber T, Fecher T, Rexer M, Schuh W-D, Kusche J, Brockmann J-M, Rieser D, Zehentner N, Kvas A, Klinger B, Baur O, Höck E, Krauss S, Jäggi A (2015) The combined satellite gravity field model GOCO05s. Presentation at EGU 2015, Vienna, April 2015

  • Mieth M, Jokat W (2014) New aeromagnetic view of the geological fabric of southern Dronning Maud Land and Coats Land, East Antarctica. Gondwana Res 25:358–367

    Article  Google Scholar 

  • Mishra D, Chandra Sekhar D, Raju V, Kumar V (1999) Crustal structure based on gravity–magnetic modeling constrained from seismic studies under Lambert Rift, Antarctica and Godavari and Mahanadi rifts, India and their interrelationship. Earth Planet Sci Lett 172:287–300

    Article  Google Scholar 

  • Molinari I, Morelli A (2011) EPcrust: a reference crustal model for the European Plate. Geophys J Int 185:352–364

    Article  Google Scholar 

  • Morelli A, Danesi S (2004) Seismological imaging of the Antarctic continental lithosphere: a review. Glob Planet Change 42:155–165

    Article  Google Scholar 

  • Moritz H (1990) The figure of the Earth. Wichmann H., Karlsruhe, p 279

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128162

    Article  Google Scholar 

  • Munson CG, Bentley CR (1992) The crustal structure beneath ice stream C and ridge BC, West Antarctica from a seismic refraction and gravity pro-file. In: Yoshida Y, Kaminuma K, Shiraishi K (eds) Recent progress in Antarctic earth science. TERRAPUB, Tokyo, pp 507–514

    Google Scholar 

  • O’Donnell JP, Nyblade AA (2014) Antarctica’s hypsometry and crustal thickness: implications for the origin of anomalous topography in East Antarctica. Earth Planet Sci Lett 388:143–155

    Article  Google Scholar 

  • Okal EA (1981) Intraplate seismicity of Antarctica and tectonic implications. Earth Planet Sci Lett 52:397–409

    Article  Google Scholar 

  • Oldenburg DW (1974) The inversion and interpretation of gravity anomalies. Geophysics 39(4):526–536

    Article  Google Scholar 

  • Pail R, Goiginger H, Schuh W-D, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:L20314

    Article  Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011a) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843

    Article  Google Scholar 

  • Pail R, Goiginger H, Schuh WD, Höck E, Brockmann JM, Fecher T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D, Gruber T (2011b) Combination of GOCE data with complementary gravity field information (GOCO). In: Proceedings of 4th international GOCE user workshop, München

  • Parker RL (1972) The rapid calculation of potential anomalies. Geophys J R Astron Soc 31:447–455

    Article  Google Scholar 

  • Pratt JH (1855) On the attraction of the Himalaya Mountains, and of the elevated regions beyond them, upon the plumb-line in India. Philos Trans R Soc Lond 145:53–100

    Article  Google Scholar 

  • Ramirez C, Nyblade A, Hansen SE, Wiens DA, Anandakrishnan S, Aster RC, Huerta AD, Shore P, Wilson P (2016) Crustal and upper-mantle structure beneath ice-covered regions in Antarctica from S-wave receiver functions and implications for heat flow. Geophys J Int 204:1636–1648

    Article  Google Scholar 

  • Reading A (2004) The seismic structure of Wilkes Land/Terre Adelie, East Antarctica and comparison with Australia: first steps in reconstructing the deep lithosphere of Gondwana. Gondwana Res 7:21–30

    Article  Google Scholar 

  • Reading AM (2006) The seismic structure of Precambrian and early Paleozoic terranes in the Lambert Glacier region East Antarctica. Earth Planet Sci Lett 244:44–57

    Article  Google Scholar 

  • Reading A (2007) The seismicity of the Antarctic Plate, in Continental intraplate earthquakes: science, hazard and policy issues, edited by S. Stein and S. Mazzotti. Geol Soc Am Spec Pap 425:285–298

    Google Scholar 

  • Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30:129–134

    Article  Google Scholar 

  • Ritzwoller MH, Shapiro NM, Levshin AL, Leahy GM (2001) Crustal and upper mantle structure beneath Antarctica and surrounding oceans. J Geophys Res B 106(12):30645–30670

    Article  Google Scholar 

  • Rodriguez E, Morris CS, Belz JE (2006) A global assessment of the SRTM performance: photogram. Eng Rem Sens 72(3):249–260

    Google Scholar 

  • Rooney ST, Blankenship DD, Bentley CR (1987) Seismic refraction measurements of crustal structure in West Antarctica. In: McKenzie GD (ed) Gondwana Six: structure, tectonics and geophysics. Geophysical Monograph Series, vol 40. American Geophysical Union, Washington, DC, pp 1–7

  • Rouland D, Xu SH, Schindele F (1985) Upper mantle structure in the southeast Indian Ocean: a surface wave investigation. Tectonophysics 114:281–292

    Article  Google Scholar 

  • Roult G, Rouland D, Montagner JP (1994) Antarctica II: upper mantle structure from velocities and anisotropy. Phys Earth Planet Inter 84:33–57

    Article  Google Scholar 

  • Sjöberg LE (2009) Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophys J Int 179:1527–1536

    Article  Google Scholar 

  • Sjöberg LE (2013) On the isotactic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz gravimetric inverse problem. Geophys J Int 193(3):1277–1282

    Article  Google Scholar 

  • Smith AM, Jordan TA, Ferraccioli F, Bingham RG (2013) Influence of subglacial conditions on ice stream dynamics: seismic and potential field data from Pine Island Glacier, West Antarctica. J Geophys Res Solid Earth 118:1471–1482

    Article  Google Scholar 

  • Stagg HMJ, Colwel JB, Direen NG, O’Brien PE, Bernardel G, Borissova I, Brown BJ, Ishirara T (2004) Geology of the continental margin of Enderby and Mac. Robertson lands, East Antarctica: insights from a regional data set. Mar Geophys Res 25:183–219

    Article  Google Scholar 

  • Stonehouse B (2002) Encyclopedia of Antarctica and the Southern Oceans. Wiley, Chichester, p 391

    Google Scholar 

  • Studinger M, Karner GD, Bell RE, Levin V, Raymond CA, Tikku AA (2003) Geophysical models for the tectonic framework of the Lake Vostok region East Antarctica. Earth Planet Sci Lett 216(4):663–677

    Article  Google Scholar 

  • Studinger M, Bell RE, Buck WR, Karner GD, Blankenship D (2004) Sub-ice geology inland of the Transantarctic Mountains in light of new aerogeophysical data. Earth Planet Sci Lett 220(3–4):391–408

    Article  Google Scholar 

  • Studinger M, Bell RE, Fitzgerald P, Buck WR (2006) Crustal architecture of the Transantarctic Mountains between the Scott and Reedy Glacier region and South Pole from aero-geophysical data. Earth Planet Sci Lett 250(1–2):182–199

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607

    Article  Google Scholar 

  • ten Brink US, Hackney RI, Bannister S, Stern T, Makovsky Y (1997) Uplift of the Transantarctic Mountains and the bedrock beneath the East Antarctic ice sheet. J Geophys Res B 12:27603–27621

    Article  Google Scholar 

  • Tenzer R, Bagherbandi M (2012a) Reformulation of the Vening-Meinesz Moritz inverse problem of isostasy for isostatic gravity disturbances. Int J Geosci 3(5A):918–929

    Article  Google Scholar 

  • Tenzer R, Bagherbandi M (2012b) Reformulation of the Vening-Meinesz Moritz inverse problem of isostasy for isostatic gravity disturbances. Int J Geosci 3(5):918–929

    Article  Google Scholar 

  • Tenzer R, Gladkikh V (2014) Assessment of density variations of marine sediments with ocean and sediment depths. Sci World J 823296:9

    Google Scholar 

  • Tenzer R, Hamayun, Vajda P (2009) Global maps of the CRUST2.0 crustal components stripped gravity disturbances. J Geophys Res 114, B, 05408

  • Tenzer R, Abdalla A, Vajda P, Hamayun (2010) The spherical harmonic representation of the gravitational field quantities generated by the ice density contrast. Contrib Geophys Geod 40(3):207–223

    Google Scholar 

  • Tenzer R, Novák P, Gladkikh V (2011) On the accuracy of the bathymetry-generated gravitational field quantities for a depth-dependent seawater density distribution. Stud Geophys Geod 55(4):609–626

    Article  Google Scholar 

  • Tenzer R, Novák P, Vajda P, Gladkikh V, Hamayun (2012a) Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Comput Geosci 16(1):193–207

    Article  Google Scholar 

  • Tenzer R, Gladkikh V, Vajda P, Novák P (2012b) Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure. Surv Geophys 33(5):817–839

    Article  Google Scholar 

  • Tenzer R, Novák P, Gladkikh V (2012c) The bathymetric stripping corrections to gravity field quantities for a depth-dependent model of the seawater density. Mar Geod 35:198–220

    Article  Google Scholar 

  • Tenzer R, Chen W, Tsoulis D, Bagherbandi M, Sjöberg LE, Novák P, Jin S (2015) Analysis of the refined CRUST1.0 crustal model and its gravity field. Surv Geophys 36(1):139–165

    Article  Google Scholar 

  • Tenzer R, Bagherbandi M, Chen W, Sjöberg LE (2016) Global isostatic gravity maps from satellite missions and their applications in the lithospheric structure studies. IEEE J Select Top Appl Earth Obs Remote Sens 10(2):549–561

    Article  Google Scholar 

  • Trey H, Cooper A, Pellis G, della Vedova B, Cochrane G, Brancolini G, Makris J (1999) Transect across the West Antarctic rift system in the Ross Sea, Antarctica. Tectonophysics 301:61–74

    Article  Google Scholar 

  • Vening Meinesz FA (1931) Une nouvelle méthode pour la réduction isostatique régionale de l’intensité de la pesanteur. Bull Géod 29:33–51

    Article  Google Scholar 

  • von Frese RRB, Tan L, Kim JW, Bentley CR (1999) Antarctic crustal modeling from the spectral correlation of free-air gravity anomalies with the terrain. J Geophys Res 104:25275–25296

    Article  Google Scholar 

  • Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Wiens D, Heeszel D, Sun X, Lloyd A, Nyblade A, Anandakrishnan S, Aster R, Chaput J, Huerta A, Wilson T (2012) New seismic structure models of Antarctica and implications for lateral changes in lithospheric thickness, mantle viscosity, and heat flow. In: Proceedings of SCAR conference, Portland, OR, USA

  • Wilson T, The POLENET Group (2011) The POLENET project: data acquisition status, initial results, future modeling. 11th International symposium on Antarctic Earth Sciences, Edinburgh, Scotland, 10–16 July

  • Winberry JP, Anandakrishnan S (2003) Seismicity and neotectonics of West Antarctica. Geophys Res Lett 30:1931–1935

    Article  Google Scholar 

  • Winberry JP, Anandakrishnan S (2004) Crustal structure of the West Antarctic rift system and Marie Byrd Land hotspot. Geology 32:977–980

    Article  Google Scholar 

  • Wörner G (1999) Lithospheric dynamics and mantle sources of alkaline magmatism of the Cenozoic West Antarctic Rift system. Glob Planet Change 23:61–77

    Article  Google Scholar 

  • Zhu L, Kanamori H (2000) Moho depth variation in Southern California from teleseismic receiver functions. J Geophys Res 105:2969–2980

    Article  Google Scholar 

Download references

Acknowledgements

The National Science Foundation of China (NSFC) is cordially acknowledged for a financial support by the research Grant No.: 41429401. We also acknowledge a financial support from the Russian Foundation for Basic Research under two research Grants: 16-55-12033 and 13-05-01123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tenzer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, A., Tenzer, R. & Bagherbandi, M. Combined Gravimetric–Seismic Crustal Model for Antarctica. Surv Geophys 39, 23–56 (2018). https://doi.org/10.1007/s10712-017-9423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-017-9423-5

Keywords

Navigation