Skip to main content

Advertisement

Log in

Estimating Runoff Using Hydro-Geodetic Approaches

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Given the continuous decline in global runoff data availability over the past decades, alternative approaches for runoff determination are gaining importance. When aiming for global scale runoff at a sufficient temporal resolution and with homogeneous accuracy, the choice to use spaceborne sensors is only a logical step. In this respect, we take water storage changes from Gravity Recovery And Climate Explorer (grace) results and water level measurements from satellite altimetry, and present a comprehensive assessment of five different approaches for river runoff estimation: hydrological balance equation, hydro-meteorological balance equation, satellite altimetry with quantile function-based stage–discharge relationships, a rudimentary instantaneous runoff–precipitation relationship, and a runoff–storage relationship that takes time lag into account. As a common property, these approaches do not rely on hydrological modeling; they are either purely data driven or make additional use of atmospheric reanalyses. Further, these methods, except runoff–precipitation ratio, use geodetic observables as one of their inputs and, therefore, they are termed hydro-geodetic approaches. The runoff prediction skill of these approaches is validated against in situ runoff and compared to hydrological model predictions. Our results show that catchment-specific methods (altimetry and runoff–storage relationship) clearly outperform the global methods (hydrological and hydro-meteorological approaches) in the six study regions we considered. The global methods have the potential to provide runoff over all landmasses, which implies gauged and ungauged basins alike, but are still limited due to inconsistencies in the global hydrological and hydro-meteorological datasets that they use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak JE, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Alsdorf D, Rodriguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45:RG2002. doi:10.1029/2006RG000197

    Google Scholar 

  • Asrar G, Kaye JA, Morel P (2001) NASA research strategy for earth system science: Climate component. Bull Am Meteorol Soc 82(7):1309–1329. doi:10.1175/1520-0477(2001)82<1309:NRSFES>2.3.CO;2

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein a, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) Fluxnet: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434. doi:10.1175/1520-0477(2001) 082<2415:FaNTTS>2.3.CO;2

  • Berry PAM, Garlick JD, Freeman JA, Mathers EL (2005) Global inland water monitoring from multi-mission altimetry. Geophys Res Lett 32(16). doi:10.1029/2005GL022814

  • Bettadpur S (2007) Gravity recovery and climate experiment, level-2 gravity field product user handbook. Center for Space Research, The University of Texas at Austin GRACE 327-734:CSR-GR-03-01

  • Bettadpur S (2012) UTCSr level-2 processing standards document (for level-2 product release 0005). Technical report rev. 4.0, Center for Space research, The University of Texas at Austin

  • Birkett CM (1998) Contribution of the TOPEX NASA radar altimeter to the global monitoring of large rivers and wetlands. Water Resour Res 34(5):1223–1239. doi:10.1029/98WR00124

    Article  Google Scholar 

  • Birkinshaw SJ, O’Donnell GM, Moore P, Kilsby CG, Fowler HJ, Berry PAM (2010) Using satellite altimetry data to augment flow estimation techniques on the mekong river. Hydrol Process 24(26):3811–3825. doi:10.1002/hyp.7811

    Article  Google Scholar 

  • Bjerklie DM, Dingman SL, Vörösmarty CJ, Bolster CH, Congalton RG (2003) Evaluating the potential for measuring river discharge from space. J Hydrol 278(1–4):17–38. doi:10.1016/S0022-1694(03)00129-X

    Article  Google Scholar 

  • Chahine MT (1992) GEWEX: the global energy and water cycle experiment. Eos Trans Am Geophys Union 73(2):9–14. doi:10.1029/91EO00007

    Article  Google Scholar 

  • Chen F, Mitchell K, Schaake J, Xue Y, Pan H, Koren V, Duan Y, Ek M, Betts A (1996) Modeling of land-surface evaporation by four schemes and comparison with fife observations. J Geophys Res 101:7251–7268. doi:10.1029/95JD02165

    Article  Google Scholar 

  • Chen JL, Wilson CR, Tapley BD (2010) The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resour Res 46(12). doi:10.1029/2010WR009383

  • Cheng M, Ries J (2013) Monthly estimates of C 20 from 5 SLR satellites based on GRACE RL05 models. GRACE technical note 7, Center for Space Research, The University of Texas at Austin

  • CLIVAR Scientific Steering Group and World Climate Research Programme (1995) CLIVAR, a study of climate variability and predictability: science plan, vol 89. World Climate Research Programme

  • Coe MT, Birkett CM (2004) Calculation of river discharge and prediction of lake height from satellite radar altimetry: example for the lake Chad basin. Water Resour Res 70:W10205. doi:10.1029/2003WR002543

  • Dahle C, Flechtner F, Gruber C, König D, König R, Michalak G, Neumayer KH (2013) GFZ GRACE level-2 processing standards document (for level-2 product release 0005). Scientific technical report rev. 1.1, GFZ German Research Centre for Geosciences

  • da Silva JS, Calmant S, Seyler F, Filho OCR, Cochonneau G, Mansur WJ (2010) Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sens Environ 114(10):2160–2181. doi:10.1016/j.rse.2010.04.020

    Article  Google Scholar 

  • Derber JC, Parrish DF, Lord SJ (1991) The new global operational analysis system at the national meteorological center. Weather Forecast 6:538–547. doi:10.1175/1520-0434(1991)006<0538:TNGOAS>2.0.CO;2

  • Dorigo WA, Wagner W, Hohensinn R, Hahn S, Paulik C, Xaver A, Gruber A, Drusch M, Mecklenburg S, van Oevelen P, Robock A, Jackson T (2011) The international soil moisture network: a data hosting facility for global in situ soil moisture measurements. Hydrol Earth Syst Sci 15(5):1675–1698. doi:10.5194/hess-15-1675-2011

    Article  Google Scholar 

  • Durand M, Fu LL, Lettenmaier D, Alsdorf D, Rodriguez E, Esteban-Fernandez D (2010) The surface water and ocean topography mission: observing terrestrial surface water and oceanic submesoscale eddies. Proc IEEE 98(5):766–779. doi:10.1109/JPROC.2010.2043031

    Article  Google Scholar 

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale \(ET_{{\rm a}}\) model. J Geophys Res 108(D22):8851. doi:10.1029/2002JD003296

  • Fekete BM, Looser U, Pietroniro A, Robarts RD (2012) Rationale for monitoring discharge on the ground. J Hydrometeorol 13(6):1977–1986. doi:10.1175/JHM-D-11-0126.1

    Article  Google Scholar 

  • Fellous JL (2014) Global climate observing system. In: Njoku E (ed) Encyclopedia of remote sensing, encyclopedia of earth sciences series. Springer, New York, pp 254–257. doi:10.1007/978-0-387-36699-9_56

  • Ferguson C, Sheffield J, Wood E, Gao H (2010) Quantifying uncertainty in a remote sensing-based estimate of evapotranspiration over continental USA. Int J Remote Sens 31:3821–3865. doi:10.1080/01431161.2010.483490

    Article  Google Scholar 

  • Fersch B, Kunstmann H, Bárdossy A, Devaraju B, Sneeuw N (2012) Continental-scale basin water storage variation from global and dynamically downscaled atmospheric water budgets in comparison with GRACE-derived observations. J Hydrometeorol 1589–1603. doi:10.1175/jhm-d-11-0143.1

  • Frappart F, Calmant S, Cauhopé M, Seyler F, Cazenave A (2006) Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sens Environ 100(2):252–264. doi:10.1016/j.rse.2005.10.027

    Article  Google Scholar 

  • Frappart F, Ramillien G, Ronchail J (2013) Changes in terrestrial water storage versus rainfall and discharges in the Amazon basin. Int J Climatol 33(14):3029–3046. doi:10.1002/joc.3647

    Article  Google Scholar 

  • Fu LL, Cazenave A (2001) Satellite altimetry and earth sciences: a handbook of techniques and applications. International geophysics series, vol 69. Academic Press, San Deigo

  • Getirana ACV (2010) Integrating spatial altimetry data into the automatic calibration of hydrological models. J Hydrol 387:244–255. doi:10.1016/j.jhydrol.2010.04.013

    Article  Google Scholar 

  • Getirana ACV, Peters-Lidard C (2013) Estimating water discharge from large radar altimetry datasets. Hydrol Earth Syst Sci 17(3):923–933. doi:10.5194/hess-17-923-2013

    Article  Google Scholar 

  • Gilchrist WG (2000) Statistical modelling with quantile functions. Chapman & Hall, London

    Book  Google Scholar 

  • Gleick PH, Cooley H, Famiglietti JS, Lettenmaier DP, Oki T, Vörösmarty CJ, Wood EF (2013) Improving understanding of the global hydrologic cycle. In: Asrar GR, Hurrell JW (eds) Climate science for serving society. Springer, Dordrecht, pp 151–184. doi:10.1007/978-94-007-6692-1_6

  • Gupta H, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng 4:135–143. doi:10.1061/(ASCE)1084-0699(1999)4:2(135)

    Article  Google Scholar 

  • Hrachowitz M, Savenije HHG, Blöschl G, McDonnell JJ, Sivapalan M, Pomeroy JW, Arheimer B, Blume T, Clark MP, Ehret U, Fenicia F, Freer JE, Gelfan A, Gupta HV, Hughes DA, Hut RW, Montanari A, Pande S, Tetzlaff D, Troch PA, Uhlenbrook S, Wagener T, Winsemius HC, Woods RA, Zehe E, Cudennec C (2013) A decade of predictions in ungauged basins (PUB)—a review. Hydrol Sci J 58(6):1–58. doi:10.1080/02626667.2013.803183

    Article  Google Scholar 

  • ICGEM (2013) International centre for global earth models. (Accessed 11 June 2013)

  • Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954. doi:10.1038/nature09396

    Article  Google Scholar 

  • Koblinsky CJ, Clarke RT, Brenner AC, Frey H (1993) Measurement of river level variations with satellite altimetry. Water Resour Res 29(6):1839–1848. doi:10.1029/93WR00542

    Article  Google Scholar 

  • Kopp TJ, Kiess RB (1996) The air force global weather central cloud analysis model. In: 15th conference on weather analysis and forecasting, pp 220–222

  • Koren V, Schaake J, Mitchell K, Duan QY, Chen F, Baker JM (1999) A parameterization of snowpack and frozen ground intended for ncep weather and climate models. J Geophys Res 104:569–585. doi:10.1029/1999JD900232

    Google Scholar 

  • Kouraev AV, Zakharova EA, Samain O, Mognard NM, Cazenave A (2004) Ob’ river discharge from TOPEX/poseidon satellite altimetry (1992–2002). Remote Sens Environ 93(12):238–245. doi:10.1016/j.rse.2004.07.007

    Article  Google Scholar 

  • Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81:733–749. doi:10.1007/s00190-007-0143-3

    Article  Google Scholar 

  • Lawford R, Strauch A, Toll D, Fekete B, Cripe D (2013) Earth observations for global water security. Curr Opin Environ Sustain 5(6):633–643. doi:10.1016/j.cosust.2013.11.009 aquatic and marine systems

    Article  Google Scholar 

  • Leon J, Calmant S, Seyler F, Bonnet MP, Cauhop M, Frappart F, Filizola N, Fraizy P (2006) Rating curves and estimation of average water depth at the upper Negro River based on satellite altimeter data and modeled discharges. J Hydrol 328(34):481–496. doi:10.1016/j.jhydrol.2005.12.006

    Article  Google Scholar 

  • Lohmann D, Mitchell KE, Houser PR, Wood EF, Schaake JC, Robock A, Cosgrove BA, Sheffield J, Duan Q, Luo L et al (2004) Streamflow and water balance intercomparisons of four land surface models in the North American land data assimilation system project. J Geophys Res Atmos (1984–2012) 109(D07):S91. doi:10.1029/2003JD003517

  • Long D, Longuevergne L, Scanlon BR (2014) Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour Res 50(2):1131–1151. doi:10.1002/2013WR014581

    Article  Google Scholar 

  • Longuevergne L, Scanlon BR, Wilson CR (2010) GRACE hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res 46(W11):517. doi:10.1029/2009WR008564

    Google Scholar 

  • Lorenz C (2009) Applying stochastic constraints on time-variable shape grace data. University of Stuttgart, Stuttgart

    Google Scholar 

  • Lorenz C, Kunstmann H (2012) The hydrological cycle in three state-of-the-art reanalyses: intercomparison and performance analysis. J Hydrometeorol 13:1397–1420. doi:10.1175/JHM-D-11-088.1

    Article  Google Scholar 

  • Lorenz C, Devaraju B, Tourian MJ, Riegger J, Kunstmann H, Sneeuw N (2014) Large-scale runoff from landmasses: a global assessment of the closure of the hydrological and atmospheric water balances. J Hydrometeorol. doi:10.1175/JHM-D-13-0157.1

  • Miralles DG, Holmes TRH, De Jeu RAM, Gash JH, Meesters AGCA, Dolman AJ (2011) Global land-surface evaporation estimated from satellite-based observations. Hydrol Earth Syst Sci 15(2):453–469. doi:10.5194/hess-15-453-2011

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Liew MWV, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900. Available at: http://swat.tamu.edu/media/1312/moriasimodeleval.pdf

  • Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111(4):519–536. doi:10.1016/j.rse.2011.02.019

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: part 1. A discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Paiva RCD, Buarque DC, Collischonn W, Bonnet MP, Frappart F, Calmant S, Mendes CAB (2013) Large-scale hydrologic and hydrodynamic modelling of the Amazon river basin. Water Resour Res 49:1226–1243. doi:10.1002/wrcr.20067

    Article  Google Scholar 

  • Papa F, Güntner A, Frappart F, Prigent C, Rossow WB (2008) Variations of surface water extent and water storage in large river basins: A comparison of different global data sources. Geophys Res Lett 35(11). doi:10.1029/2008GL033857

  • Papa F, Durand F, Rossow WB, Rahman A, Bala SK (2010) Satellite altimeter-derived monthly discharge of the Ganga–Brahmaputra river and its seasonal to interannual variations from 1993 to 2008. J Geophys Res 115(C12):013. doi:10.1029/2009JC006075

    Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New York

    Google Scholar 

  • Riegger J, Tourian MJ (2014) Characterization of runoff-storage relationships by satellite gravimetry and remote sensing. Water Resour Res. doi:10.1002/2013WR013847

  • Riegger J, Tourian M, Devaraju B, Sneeuw N (2012) Analysis of grace uncertainties by hydrological and hydro-meteorological observations. J Geodyn 59:16–27. doi:10.1016/j.jog.2012.02.001

    Article  Google Scholar 

  • Roads JO, Chen SC, Guetter AK, Georgakaos KP (1994) Large-scale aspects of the United States hydrologic cycle. Bullet Am Meteorol Soc 75:1589–1610. doi:10.1175/1520-0477(1994)075<1589:LSAOTU>2.0.CO;2

  • Rodell M, Famiglietti JS, Chen J, Seneviratne SI, Viterbo P, Holl S, Wilson CR (2004a) Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys Res Lett 31(20). doi:10.1029/2004GL020873

  • Rodell M, Houser P, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin J, Walker J, Lohmann D, Toll D (2004b) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti J (2009) Satellite-based estimates of ground-water depletion in india. Nature 460:999–1002. doi:10.1038/nature08238

    Article  Google Scholar 

  • Sahoo AK, Pan M, Troy TJ, Vinukollu RK, Sheffield J, Wood EF (2011) Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sens Environ 115(8):1850–1865. doi:10.1016/j.rse.2011.03.009

    Article  Google Scholar 

  • Salvucci GD, Gentine P (2013) Emergent relation between surface vapor conductance and relative humidity profiles yields evaporation rates from weather data. Proc Natl Acad Sci 110:6287–6291. doi:10.1073/pnas.1215844110

    Article  Google Scholar 

  • Schlosser CA, Houser PR (2007) Assessing a satellite-era perspective of the global water cycle. J Clim 20:1316–1338. doi:10.1175/JCLI4057.1

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) gpcc’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoret Appl Climatol 115:15–40. doi:10.1007/s00704-013-0860-x

    Article  Google Scholar 

  • Seo KW, Wilson CR, Han SC, Waliser DE (2008) Gravity recovery and climate experiment (GRACE) alias error from ocean tides. J Geophys Res 113(B03):405. doi:10.1029/2006JB004747

    Google Scholar 

  • Sheffield J, Ferguson CR, Troy TJ, Wood EF, McCabe MF (2009) Closing the terrestrial water budget from satellite remote sensing. Geophys Res Lett 36(7). doi:10.1029/2009GL037338

  • Simmons A, Uppala S, Dee D, Kobayashi S (2006) ERA-interim: new ECMWF reanalysis products. ECMWF Newsl 110:25–35

    Google Scholar 

  • Southwood D (1999) Introducing the ‘Living Planet’ programme—the ESA strategy for earth observation. Technical report, European Space Agency, ESA Publications Division, Noordwijk, The Netherlands

  • Syed T, Famiglietti J, Chambers D (2009) GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J Hydrometeorol 10:22–40. doi:10.1175/2008JHM993.1

    Article  Google Scholar 

  • Syed TH, Famiglietti JS, Chen J, Rodell M, Seneviratne SI, Viterbo P, Wilson CR (2005) Total basin discharge for the Amazon and Mississippi river basins from GRACE and a land-atmosphere water balance. Geophys Res Lett 32(L24):404. doi:10.1029/2005GL024851

    Google Scholar 

  • Syed TH, Famiglietti JS, Zlotnicki V, Rodell M (2007) Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis. Geophys Res Lett 34(19). doi:10.1029/2007GL031254

  • Tourian MJ, Sneeuw N, Bárdossy A (2013) A quantile function approach to discharge estimation from satellite altimetry (ENVISAT). Water Resour Res 49:1–13. doi:10.1002/wrcr.20348

    Article  Google Scholar 

  • Trenberth K, Asrar G (2014) Challenges and opportunities in water cycle research: WCRP contributions. Surv Geophys 35(3):515–532. doi:10.1007/s10712-012-9214-y

    Article  Google Scholar 

  • Trenberth KE, Smith L, Qian T, Dai A, Fasullo J (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8:758–769. doi:10.1175/JHM600.1

    Article  Google Scholar 

  • Vergnes JP, Decharme B (2012) A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges. Hydrol Earth Syst Sci Discuss 9:3889–3908. doi:10.5194/hess-16-3889-2012

    Article  Google Scholar 

  • Vinukollu RK, Wood EF, Ferguson CR, Fisher JB (2011) Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: evaluation of three process-based approaches. Remote Sens Environ 115(3):801–823. doi:10.1016/j.rse.2010.11.006

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) The time-varibility of the earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30230. doi:10.1029/98JB02844

  • Werth S, Güntner A, Schmidt R, Kusche J (2009) Evaluation of GRACE filter tools from a hydrological perspective. Geophys J Int 179:1499–1515. doi:10.1111/j.1365-246X.2009.04355.x

    Article  Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans AGU 72(41):441–446

    Article  Google Scholar 

  • Wilson W, Bates P, Alsdorf D, Forsberg B, Horritt M, Melack J, Frappart F, Famiglietti J (2007) Modeling large-scale inundation of Amazonian seasonally flooded wetlands. Geophys Res Lett 34(L15):404. doi:10.1029/2007GL030156

    Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558. doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2

  • Zaitchik BF, Rodell M, Olivera F (2010) Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme. Water Resour Res 46:W06507

  • Zakharova EA, Kouraev AV, Cazenave A, Seyler F (2006) Amazon river discharge estimated from TOPEX/poseidon altimetry. C R Geosci 338:188–196. doi:10.1016/j.crte.2005.10.003

    Article  Google Scholar 

  • Zhou X, Zhang Y, Wang Y, Zhang H, Vaze J, Zhang L, Yang Y, Zhou Y (2012) Benchmarking global land surface models against the observed mean annual runoff from 150 large basins. J Hydrol 470:269–279. doi:10.1016/j.jhydrol.2012.09.002

Download references

Acknowledgments

We gratefully acknowledge the support of projects SN13/1, BA1150/11, KU2090/1 by the Deutsche Forschungsgemeinschaft (dfg) in the framework of the priority program SPP1257 Mass Transport and Mass Distribution in the System Earth. We would like to thank the following data providers: Global Runoff Data Centre (grdc) www.bafg.de/GRDC, Global Precipitation Climatology Project (gpcp) precip.gsfc.nasa.gov, European Centre for Medium-Range Weather Forecasts (ecmwf) www.ecmwf.int, University of Texas at Austin, Center for Space Research (csr) www.csr.utexas.edu/, NASA’s Earth Science Division and Goddard Earth Sciences (ges) Data and Information Services Center (disc) ldas.gsfc.nasa.gov. Further thanks are due to Dr. Diego Miralles (University of Bristol) for kindly providing the gleam evapotranspiration data. All graphics have been produced with the Generic Mapping Tools (gmt) gmt.soest.hawaii.edu (Wessel and Smith 1991).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Sneeuw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sneeuw, N., Lorenz, C., Devaraju, B. et al. Estimating Runoff Using Hydro-Geodetic Approaches. Surv Geophys 35, 1333–1359 (2014). https://doi.org/10.1007/s10712-014-9300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-014-9300-4

Keywords

Navigation