Surveys in Geophysics

, Volume 33, Issue 3, pp 445-451

Open Access This content is freely available online to anyone, anywhere at any time.

Solar Forcing of Climate

  • C. de JagerAffiliated withRoyal Netherlands Institute for Sea ResearchAstronomical and Space Research Institutes at Utrecht Email author 


Solar activity is evident both in the equatorial activity centres and in the polar magnetic field variations. The total solar irradiance variation is due to the former component. During the extraordinarily long minimum of activity between sunspot cycles 23 and 24, the variations related to the equatorial field components reached their minimum values in the first half of 2008, while those related to the polar field variations had their extreme values rather at the end of 2009 and the first half of 2010. The explanation of this delay is another challenge for dynamo theories. The role of the open solar flux has so far been grossly underestimated in discussions of Sun-climate relations. The gradual increase in the average terrestrial ground temperature since 1610 is related both to the equatorial and polar field variations. The main component (0.077 K/century) is due to the variation of the total solar irradiance. The second component (0.040 K/century) waits for an explanation. The smoothed residual increase, presumably antropogenic, obtained after subtraction of the known components from the total increase was 0.31 K in 1999.


Solar forcing Climate Total and spectral solar irradiances