Skip to main content

Advertisement

Log in

Energetic Constraints on Precipitation Under Climate Change

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Energetic constraints on precipitation are useful for understanding the response of the hydrological cycle to ongoing climate change, its response to possible geoengineering schemes, and the limits on precipitation in very warm climates of the past. Much recent progress has been made in quantifying the different forcings and feedbacks on precipitation and in understanding how the transient responses of precipitation and temperature might differ qualitatively. Here, we introduce the basic ideas and review recent progress. We also examine the extent to which energetic constraints on precipitation may be viewed as radiative constraints and the extent to which they are confirmed by available observations. Challenges remain, including the need to better demonstrate the link between energetics and precipitation in observations and to better understand energetic constraints on precipitation at sub-global length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. See Peixoto and Oort (1992), Trenberth et al. (2009), and Stevens and Schwartz (2011) for reviews of the energy budget of the Earth.

  2. Positive fluxes of energy are upwards and all fluxes are averaged globally and over sufficiently long times that we may neglect changes in energy and water storage in the energy budget of a given climate state.

  3. Interestingly, if the hydrological sensitivity is instead defined in terms of TOA radiative forcing rather than temperature change, it is not very different between solar and CO2 forcing (Lambert and Faull 2007).

  4. Andrews et al. (2010) show that the temperature dependence of the slow precipitation response is similar for nine different forcing scenarios. The precipitation sensitivities are normalized by a temperature change that is different for the slow and total responses because the fast response includes a change in land surface temperature and the slow response is calculated as the difference between total and fast responses.

  5. Ming et al. (2010) consider the change in surface sensible heat flux to be part of the fast or temperature-independent response.

  6. In the case of tropical precipitation extremes, the primary balance is between latent heating and DSE flux divergence (Muller et al. 2011).

References

  • Adler RF, Kidd C, Petty G, Morissey M, Goodman HM (2001) Intercomparison of global precipitation products: the third precipitation intercomparison project (PIP-3). Bull Am Meteorol Soc 82:1377–1396

    Article  Google Scholar 

  • Adler RF, Gu G, Wang JJ, Huffman GJ, Curtis S, Bolvin D (2008) Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J Geophys Res 113:D22,104

    Article  Google Scholar 

  • Allan RP (2006) Variability in clear-sky longwave radiative cooling of the atmosphere. J Geophys Res 111:D22, 105

    Article  Google Scholar 

  • Allan RP (2009) Examination of relationships between clear-sky longwave radiation and aspects of the atmospheric hydrological cycle in climate models, reanalyses, and observations. J Clim 22:3127–3145

    Article  Google Scholar 

  • Allan RP (2011) Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere. Meteorol Appl 18:324–333

    Google Scholar 

  • Allan RP, Slingo A, Ramaswamy V (2002) Analysis of moisture variability in the European Centre for medium-range weather forecasts 15-year reanalysis over the tropical oceans. J Geophys Res 107:4230

    Article  Google Scholar 

  • Allan RP, Soden BJ, John VO, Ingram WI, Good P (2010) Current changes in tropical precipitation. Environ Res Lett 5:025205

    Article  Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232

    Article  Google Scholar 

  • Andrews T, Forster PM (2010) The transient response of global-mean precipitation to increasing carbon dioxide levels. Environ Res Lett 5:025212

    Article  Google Scholar 

  • Andrews T, Forster PM, Gregory JM (2009) A surface energy perspective on climate change. J Clim 22:2557–2570

    Article  Google Scholar 

  • Andrews T, Forster PM, Boucher O, Bellouin N, Jones A (2010) Precipitation, radiative forcing and global temperature change. Geophys Res Lett 37:L14701

    Article  Google Scholar 

  • Arkin PA, Smith TM, Sapiano MRP, Janowiak J (2010) The observed sensitivity of the global hydrological cycle to changes in surface temperature. Environ Res Lett 5:035201

    Article  Google Scholar 

  • Bala G, Duffy PB, Taylor KE (2008) Impact of geoengineering schemes on the global hydrological cycle. Proc Nat Acad Sci 105:7664–7669

    Article  Google Scholar 

  • Bala G, Caldeira K, Nemani R (2010) Fast versus slow response in climate change: implications for the global hydrological cycle. Clim Dyn 35:423–434

    Article  Google Scholar 

  • Ban-Weiss GA, Cao L, Bala G, Caldeira K (2011) Dependence of climate forcing and response on the altitude of black carbon aerosols. Clim Dyn doi:10.1007/s00382-011-1052-y

  • Bengtsson L, Hagemann S, Hodges KI (2004) Can climate trends be calculated from reanalysis data? J Geophys Res 109:D11111

    Article  Google Scholar 

  • Boer GJ (1993) Climate change and the regulation of the surface moisture and energy budgets. Clim Dyn 8:225–239

    Article  Google Scholar 

  • Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne JL, Hall A, Hallegatte S, Holland MM, Ingram W, Randall DA, Soden BJ, Tselioudis G, Webb MJ (2006) How well do we understand and evaluate climate change feedback processes?. J Clim 19:3445–3482

    Article  Google Scholar 

  • Cao L, Bala G, Caldeira K (2011) Why is there a short-term increase in global precipitation in response to diminished CO2 forcing?. Geophys Res Lett 38:L06703

    Article  Google Scholar 

  • Chou C, Chen CA (2010) Depth of convection and the weakening of tropical circulation in global warming. J Clim 23:3019–3030

    Article  Google Scholar 

  • Chou C, Neelin JD (2004) Mechanisms of global warming impacts on regional tropical precipitation. J Clim 17:2688–2701

    Article  Google Scholar 

  • Chou C, Tu JY, Tan PH (2007) Asymmetry of tropical precipitation change under global warming. Geophys Res Lett 34:L17708

    Article  Google Scholar 

  • Chou C, Neelin JD, Chen CA, Tu JY (2009) Evaluating the “Rich-Get-Richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Durre I, Williams CN Jr, Yin X, Vose RS (2009) Radiosonde-based trends in precipitable water over the Northern Hemisphere: an update. J Geophys Res 114:D05112

    Article  Google Scholar 

  • Evan AT, Heidinger AK, Vimont DJ (2007) Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys Res Lett 34:L04701

    Article  Google Scholar 

  • Frieler K, Meinshausen M, von Deimling TS, Andrews T, Forster P (2011) Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon. Geophys Res Lett 38:L04702

    Article  Google Scholar 

  • Frierson DMW (2007) The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J Atmos Sci 64:1959–1976

    Article  Google Scholar 

  • Frierson DMW, Held IM, Zurita-Gotor P (2006) A gray-radiation aquaplanet moist GCM. Part I: static stability and eddy scale. J Atmos Sci 63:2548–2566

    Article  Google Scholar 

  • Gastineau G, Soden BJ (2011) Evidence for a weakening of tropical surface wind extremes in response to atmospheric warming. Geophys Res Lett 38:L09706

    Article  Google Scholar 

  • Gu G, Adler RF, Huffman GJ, Curtis S (2007) Tropical rainfall variability on interannual-to-interdecadal and longer time scales derived from the GPCP monthly product. J Clim 20:4033–4046

    Article  Google Scholar 

  • Hall A, Manabe S (2000) Effect of water vapor feedback on internal and anthropogenic variations of the global hydrologic cycle. J Geophys Res 105:6935–6944

    Article  Google Scholar 

  • Harries JE, Futyan JM (2006) On the stability of the Earth’s radiative energy balance: response to the Mt. Pinatubo eruption. Geophys Res Lett 33:L23814

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808

    Article  Google Scholar 

  • John VO, Allan RP, Soden BJ (2009) How robust are observed and simulated precipitation responses to tropical ocean warming. Geophys Res Lett 36:L14702

    Article  Google Scholar 

  • Lambert FH, Allen MR (2009) Are changes in global precipitation constrained by the tropospheric energy budget?. J Clim 22:499–517

    Article  Google Scholar 

  • Lambert FH, Faull NE (2007) Tropospheric adjustment: the response of two general circulation models to a change in insolation. Geophys Res Lett 34:L03701

    Article  Google Scholar 

  • Lambert FH, Webb MJ (2008) Dependency of global mean precipitation on surface temperature. Geophys Res Lett 35:L16706

    Article  Google Scholar 

  • Lambert FH, Stine AR, Krakauer NY, Chiang JCH (2008) How much will precipitation increase with global warming?. Eos Trans AGU 89:193–194

    Article  Google Scholar 

  • Le Hir G, Donnadieu Y, Goddéris Y, Pierrehumbert RT, Halverson GP, Macouin M, Nédélec A, Ramstein G (2009) The snowball Earth aftermath: exploring the limits of continental weathering processes. Earth Planet Sci Lett 277:453–463

    Article  Google Scholar 

  • Levermann A, Schewe J, Petoukhov V, Held H (2009) Basic mechanism for abrupt monsoon transitions. Proc Nat Acad Sci 106:20,572–20,577

    Article  Google Scholar 

  • Li G, Ren B, Yang C, Zheng J (2011) Revisiting the trend of the tropical and subtropical Pacific surface latent heat flux during 1977–2006. J Geophys Res 116:D10115

    Article  Google Scholar 

  • Liepert BG, Previdi M (2009) Do models and observations disagree on the rainfall response to global warming?. J Clim 22:3156–3166

    Article  Google Scholar 

  • Loeb NG, Wielicki BA, Doelling DR, Smith GL, Keyes DF, Kato S, Manalo-Smith N, Wong T (2009) Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J Clim 22:748–766

    Article  Google Scholar 

  • Lorenz DJ, DeWeaver ET, Vimont DJ (2010) Evaporation change and global warming: the role of net radiation and relative humidity. J Geophys Res 115:D20118

    Article  Google Scholar 

  • Min SK, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381

    Article  Google Scholar 

  • Ming Y, Ramaswamy V, Persad G (2010) Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys Res Lett 37:L13701

    Article  Google Scholar 

  • Mishchenko MI, Geogdzhayev IV, Rossow WB, Cairns B, Carlson BE, Lacis AA, Liu L, Travis LD (2007) Long-term satellite record reveals likely recent aerosol trend. Science 315:1543

    Article  Google Scholar 

  • Mitchell JFB, Wilson CA, Cunnington WM (1987) On CO2 climate sensitivity and model dependence of results. Q J R Meteorol Soc 113:293–322

    Article  Google Scholar 

  • Muller CJ, O’Gorman PA (2011) An energetic perspective on the regional response of precipitation to climate change. Nat Clim Change 1:266–271

    Article  Google Scholar 

  • Muller CJ, O’Gorman PA, Back LE (2011) Intensification of precipitation extremes with warming in a cloud resolving model. J Clim 24:2784–2800

    Article  Google Scholar 

  • O’Gorman PA, Muller CJ (2010) How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate-change simulations?. Environ Res Lett 5:025207

    Article  Google Scholar 

  • O’Gorman PA, Schneider T (2008) The hydrological cycle over a wide range of climates simulated with an idealized GCM. J Clim 21:3815–3832

    Article  Google Scholar 

  • O’Gorman PA, Schneider T (2009a) The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc Natl Acad Sci 106:14,773–14,777

    Google Scholar 

  • O’Gorman PA, Schneider T (2009b) Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J Clim 22:5676–5685

    Article  Google Scholar 

  • Ohmura A, Dutton EG, Forgan B, Fröhlich C, Gilgen H, Hegner H, Heimo A, König-Langlo G, McArthur B, Müller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline surface radiation network (BSRN/WCRP): new precision radiometry for climate research. Bull Am Meteorol Soc 79:2115–2136

    Article  Google Scholar 

  • Pall P, Allen MR, Stone DA (2007) Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim Dyn 28:351–363

    Article  Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New York

  • Philipona R, Behrens K, Ruckstuhl C (2009) How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys Res Lett 36:L02806

    Article  Google Scholar 

  • Pierrehumbert RT (1999) Subtropical water vapor as a mediator of rapid global climate change. In: Clarks PU, Webb RS, Keigwin LD (eds) Mechanisms of global climate change at millennial time scales. Geophys. Monogr. Ser., vol 112, American Geophysical Union, Washington, p 339

  • Pierrehumbert RT (2002) The hydrologic cycle in deep-time climate problems. Nature 419:191–198

    Article  Google Scholar 

  • Power SB, Smith IN (2007) Weakening of the Walker circulation and apparent dominance of El Niño both reach record levels, but has ENSO really changed?. Geophys Res Lett 34:L18702

    Article  Google Scholar 

  • Previdi M (2010) Radiative feedbacks on global precipitation. Environ Res Lett 5:025211

    Article  Google Scholar 

  • Previdi M, Liepert BG (2008) Interdecadal variability of rainfall on a warming planet. Eos Trans AGU 89:193–195

    Article  Google Scholar 

  • Quartly GD, Kyte EA, Srokosz MA, Tsimplis MN (2007) An intercomparison of global oceanic precipitation climatologies. J Geophys Res 112:D10121

    Article  Google Scholar 

  • Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys Res Lett 35:L18707

    Article  Google Scholar 

  • Ramanathan V (1981) The role of ocean-atmosphere interactions in the CO2 climate problem. J Atmos Sci 38:918–930

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124

    Article  Google Scholar 

  • Richter I, Xie SP (2008) Muted precipitation increase in global warming simulations: A surface evaporation perspective. J Geophys Res 113:D24118

    Article  Google Scholar 

  • Romps DM (2011) Response of tropical precipitation to global warming. J Atmos Sci 68:123–138

    Article  Google Scholar 

  • Santer BD, Mears C, Wentz FJ, Taylor KE, Gleckler PJ, Wigley TML, Barnett TP, Boyle JS, Brüggemann W, Gillett NP, Klein SA, Meehl GA, Nozawa T, Pierce DW, Stott PA, Washington WM, Wehner MF (2007) Identification of human-induced changes in atmospheric moisture content. Proc Natl Acad Sci 104:15,248–15,253

    Article  Google Scholar 

  • Schneider T, O’Gorman PA, Levine XJ (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48:RG3001

    Article  Google Scholar 

  • Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668

    Article  Google Scholar 

  • Sherwood SC, Ingram W, Tsushima Y, Satoh M, Roberts M, Vidale PL, O’Gorman PA (2010) Relative humidity changes in a warmer climate. J Geophys Res 115:D09104

    Article  Google Scholar 

  • Soden BJ, Held IM, Colman R, Shell KM, Kiehl JT, Shields CA (2008) Quantifying climate feedbacks using radiative kernels. J Clim 21:3504–3520

    Article  Google Scholar 

  • Sohn BJ (1999) Cloud-induced infrared radiative heating and its implications for large-scale tropical circulations. J Atmos Sci 56:2657–2672

    Article  Google Scholar 

  • Sohn BJ, Park SC (2010) Strengthened tropical circulations in past three decades inferred from water vapor transport. J Geophys Res 115:D15112

    Article  Google Scholar 

  • Stackhouse PW Jr, Gupta SK, Cox SJ, Zhang T, Mikovitz JC, Hinkelman LM (2011) 24.5-year SRB data set released. GEWEX News 21:10–12

    Google Scholar 

  • Stephens GL, Ellis TD (2008) Controls of global-mean precipitation increases in global warming GCM experiments. J Clim 21:6141–6155

    Article  Google Scholar 

  • Stephens GL, Hu Y (2010) Are climate-related changes to the character of global-mean precipitation predictable?. Environ Res Lett 5:025209

    Article  Google Scholar 

  • Stevens B, Schwartz SE (2011) Observing and modeling Earth’s energy flows. Surv Geophys (submitted)

  • Sun Y, Solomon S, Dai A, Portmann RW (2007) How often will it rain?. J Clim 20:4801–4818

    Article  Google Scholar 

  • Takahashi K (2009a) Radiative constraints on the hydrological cycle in an idealized radiative-convective equilibrium model. J Atmos Sci 66:77–91

    Article  Google Scholar 

  • Takahashi K (2009b) The global hydrological cycle and atmospheric shortwave absorption in climate models under CO2 forcing. J Clim 22:5667–5675

    Article  Google Scholar 

  • Trenberth KE (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Change 42:327–339

    Article  Google Scholar 

  • Trenberth KE (2002) Changes in tropical clouds and radiation. Science 296:2095a

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (2005) Relationships between precipitation and surface temperature. Geophys Res Lett 32:L14703

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP, Hurrell JW, Fiorino M (2001) Quality of reanalyses in the tropics. J Clim 14:1499–1510

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90:311–323

    Article  Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76

    Article  Google Scholar 

  • Wang JJ, Adler RF, Gu G (2008) Tropical rainfall-surface temperature relations using Tropical Rainfall Measuring Mission precipitation data. J Geophys Res 113:D18115

    Article  Google Scholar 

  • Wentz FJ, Schabel M (2000) Precise climate monitoring using complementary satellite data sets. Nature 403:414–416

    Article  Google Scholar 

  • Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring?. Science 317:233–235

    Article  Google Scholar 

  • Wielicki BA, Wong T, Allan RP, Slingo A, Kiehl JT, Soden BJ, Gordon CT, Miller AJ, Yang S, Randall DA, Robertson F, Susskind J, Jacobowitz H (2002) Evidence for large decadal variability in the tropical mean radiative energy budget. Science 295:841–844

    Article  Google Scholar 

  • Wild M (1999) Discrepancies between model-calculated and observed shortwave atmospheric absorption in areas with high aerosol loadings. J Geophys Res 104:27,361–27,371

    Article  Google Scholar 

  • Wild M, Liepert B (2010) The Earth radiation balance as driver of the global hydrological cycle. Environ Res Lett 5:025003

    Article  Google Scholar 

  • Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, Dutton EG, Forgan B, Kallis A, Russak V, Tsvetkov A (2005) From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308:847–850

    Article  Google Scholar 

  • Wild M, Grieser J, Schär C (2008) Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys Res Lett 35:L17706

    Article  Google Scholar 

  • Willett KM, Jones PD, Gillett NP, Thorne PW (2008) Recent changes in surface humidity: development of the HadCRUH dataset. J Clim 21:5364–5383

    Article  Google Scholar 

  • Wong T, Wielicki BA, Lee RB, Smith GL, Bush KA, Willis JK (2006) Reexamination of the observed decadal variability of the Earth radiation budget using altitude-corrected ERBE/ERBS nonscanner WFOV data. J Clim 19:4028–4040

    Article  Google Scholar 

  • Wu P, Wood R, Ridley J, Lowe J (2010) Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys Res Lett 37:L12705

    Article  Google Scholar 

  • Yang F, Kumar A, Schlesinger ME, Wang W (2003) Intensity of hydrological cycles in warmer climates. J Clim 16:2419–2423

    Article  Google Scholar 

  • Yang H, Tung KK (1998) Water vapor, surface temperature, and the greenhouse effect—a statistical analysis of tropical-mean data. J Clim 11:2686–2697

    Article  Google Scholar 

  • Yu L (2007) Global variations in oceanic evaporation (1958–2005): the role of the changing wind speed. J Clim 20:5376–5390

    Article  Google Scholar 

  • Zahn M, Allan RP (2011) Changes in water vapor transports of the ascending branch of the tropical circulation. J Geophys Res 116:D18111

    Article  Google Scholar 

  • Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448:461–465

    Article  Google Scholar 

  • Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109:D19105

    Article  Google Scholar 

  • Zolina O, Simmer C, Gulev SK, Kollet S (2010) Changing structure of European precipitation: longer wet periods leading to more abundant rainfalls. Geophys Res Lett 37:L06704

    Article  Google Scholar 

Download references

Acknowledgments

M. Byrne is supported through the MIT Joint Program on the Science and Policy of Global Change. R. Allan is funded through the National Environment Research Council PREPARE project (NE/G015708/1) and National Centre for Atmospheric Sciences. We thank the American Meteorological Society (AMS) and T. Andrews for reproduction of Fig. 3, the American Geophysical Union (AGU) and L. Cao for reproduction of Fig. 6, and C. J. Muller for Fig. 7. The SSM/I data were extracted from Remote Sensing Systems, the GPCP data from the NASA Goddard Space Flight Center, the HadCRUH and HadCRUT data from http://www.metoffice.gov.uk/hadobs/ and ERA Interim data from http://www.ecmwf.int. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model data set. Support of this data set is provided by the Office of Science, US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. O’Gorman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Gorman, P.A., Allan, R.P., Byrne, M.P. et al. Energetic Constraints on Precipitation Under Climate Change. Surv Geophys 33, 585–608 (2012). https://doi.org/10.1007/s10712-011-9159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-011-9159-6

Keywords

Navigation