, Volume 33, Issue 3-4, pp 413-426,
Open Access This content is freely available online to anyone, anywhere at any time.

Tracking Earth’s Energy: From El Niño to Global Warming


The state of knowledge and outstanding issues with respect to the global mean energy budget of planet Earth are described, along with the ability to track changes over time. Best estimates of the main energy components involved in radiative transfer and energy flows through the climate system do not satisfy physical constraints for conservation of energy without adjustments. The main issues relate to the downwelling longwave (LW) radiation and the hydrological cycle, and thus the surface evaporative cooling. It is argued that the discrepancy is 18% of the surface latent energy flux, but only 4% of the downwelling LW flux and, for various reasons, it is most likely that the latter is astray in some calculations, including many models, although there is also scope for precipitation estimates to be revised. Beginning in 2000, the top-of-atmosphere radiation measurements provide stable estimates of the net global radiative imbalance changes over a decade, but after 2004 there is “missing energy” as the observing system of the changes in ocean heat content, melting of land ice, and so on is unable to account for where it has gone. Based upon a number of climate model experiments for the twenty-first century where there are stases in global surface temperature and upper ocean heat content in spite of an identifiable global energy imbalance, we infer that the main sink of the missing energy is likely the deep ocean below 275 m depth.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.