Skip to main content
Log in

Volume entropy for minimal presentations of surface groups in all ranks

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We study the volume entropy of a class of presentations (including the classical ones) for all surface groups, called minimal geometric presentations. We rediscover a formula first obtained by Cannon and Wagreich (Math Ann 293(2), 239–257, 1992) with the computation in a non published manuscript by Cannon (The growth of the closed surface groups and the compact hyperbolic coxeter groups, 1980). The result is surprising: an explicit polynomial of degree n, the rank of the group, encodes the volume entropy of all classical presentations of surface groups. The approach we use is completely different. It is based on a dynamical system construction following an idea due to Bowen and Series (Inst Hautes Études Sci Publ Math 50, 153–170, 1979) and extended to all geometric presentations in Los (J Topol, 7(1), 120–154, 2013). The result is an explicit formula for the volume entropy of minimal presentations for all surface groups, showing a polynomial dependence in the rank \(n>2\). We prove that for a surface group \(G_n\) of rank n with a classical presentation \(P_n\) the volume entropy is \(\log (\lambda _n)\), where \(\lambda _n\) is the unique real root larger than one of the polynomial

$$\begin{aligned} x^{n} - 2(n - 1) \sum _{j=1}^{n-1} x^{j} + 1. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alsedà, L., Llibre, J., Misiurewicz, M.: Combinatorial Dynamics and Entropy in Dimension One, Volume 5 of Advanced Series in Nonlinear Dynamics, 2nd edn. World Scientific Publishing Co. Inc., River Edge, NJ (2000)

    Book  Google Scholar 

  2. Block, L., Guckenheimer, J., Misiurewicz, M., Young, L. S.: Periodic points and topological entropy of one-dimensional maps. In: Global Theory of Dynamical Systems. Proceedings of International Conference on Northwestern University, Evanston, IL, 1979), vol. 819 of Lecture Notes in Mathmatics, pp. 18–34. Springer, Berlin (1980)

  3. Bowen, R., Series, C.: Markov maps associated with Fuchsian groups. Inst. Hautes Études Sci. Publ. Math. 50, 153–170 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calegari, D.: The ergodic theory of hyperbolic groups. Contemp. Math. 597, 15–52 (2013)

    Article  MathSciNet  Google Scholar 

  5. Cannon, J.W.: The growth of the closed surface groups and the compact hyperbolic coxeter groups. https://books.google.es/books?id=Tk-wygAACAAJ (1980)

  6. Cannon, J.W., Wagreich, Ph: Growth functions of surface groups. Math. Ann. 293(2), 239–257 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cannon, James W.: The combinatorial structure of cocompact discrete hyperbolic groups. Geom. Dedicata 16(2), 123–148 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. de la Harpe, Pierre: Topics in Geometric Group Theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (2000)

    Google Scholar 

  9. Epstein, David B.A., Cannon, James W., Holt, Derek F., Levy, Silvio V.F., Paterson, Michael S., Thurston, William P.: Word Processing in Groups. Jones and Bartlett Publishers, Boston, MA (1992)

    MATH  Google Scholar 

  10. Floyd, William J., Plotnick, Steven P.: Growth functions on Fuchsian groups and the Euler characteristic. Invent. Math. 88(1), 1–29 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gantmacher, F.R.: The Theory of Matrices. Vols. 1, 2. (Trans by K. A. Hirsch). Chelsea Publishing Co., New York (1959)

  12. Grigorchuk, R.I.: On the Milnor problem of group growth. Dokl. Akad. Nauk SSSR 271(1), 30–33 (1983)

    MathSciNet  Google Scholar 

  13. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory, Volume 8 of Mathematical Sciences Research Institute Publications, pp. 75–263. Springer, New York (1987)

  14. Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Los, J.: Volume entropy for surface groups via Bowen-Series-like maps. J. Topol. 7(1), 120–154 (2013)

  16. Milnor, J., Thurston, W.: On iterated maps of the interval. In: Dynamical Systems (College Park, MD, 1986–87), volume 1342 of Lecture Notes in Mathmatics, pp. 465–563. Springer, Berlin (1988)

  17. Shub, M.: Stabilité globale des systèmes dynamiques, volume 56 of Astérisque. Société Mathématique de France, Paris, 1978. With an English preface and summary

  18. Stillwell, John: Classical Topology and Combinatorial Group Theory, Volume 72 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (1993)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Juher.

Additional information

The authors have been partially supported by MINECO Grant Numbers MTM2008-01486 and MTM2011-26995-C02-01. This work has been carried out thanks to the support of the ARCHIMEDE Labex (ANR-11-LABX- 0033).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsedà, L., Juher, D., Los, J. et al. Volume entropy for minimal presentations of surface groups in all ranks. Geom Dedicata 180, 293–322 (2016). https://doi.org/10.1007/s10711-015-0103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0103-7

Keywords

Mathematics Subject Classification (1991)

Navigation