Skip to main content
Log in

A coding-free simplicity criterion for the Lyapunov exponents of Teichmüller curves

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this note we show that the results of Furstenberg on the Poisson boundary of lattices of semisimple Lie groups allow to deduce simplicity properties of the Lyapunov spectrum of the Kontsevich–Zorich cocycle of Teichmüller curves in moduli spaces of Abelian differentials without the usage of codings of the Teichmüller flow. As an application, we show the simplicity of some Lyapunov exponents in the setting of (some) Prym Teichmüller curves of genus 4 where a coding-based approach seems hard to implement because of the poor knowledge of the Veech groups of these Teichmüller curves. Finally, we extend the discussion in this note to show the simplicity of Lyapunov exponents coming from (high weight) variations of Hodge structures associated to mirror quintic Calabi–Yau threefolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. See, e.g., the survey [15] of Furman for a gentle introduction to the Poisson boundary.

  2. Recall that, by hypothesis, \((M,\omega )\) has no non-trivial automorphisms so that \(\text {SL}(M,\omega )\) injects into \(\text {Aff}(M,\omega )\).

  3. Recall that a Calabi–Yau \(n\)-fold is a compact Kähler manifold of complex dimension \(n\) with vanishing Ricci curvature.

  4. Actually, the same argument can be used to obtain an algebro-geometrical proof of Forni’s estimate.

References

  1. Avila, A., Viana, M.: Simplicity of Lyapunov spectra: proof of the Kontsevich-Zorich conjecture. Acta Math. 198, 1–56 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bainbridge, M.: Euler characteristics of Teichmüller curves in genus two. Geom. Topol. 11, 1887–2073 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chaika, J., Eskin, A.: Every flat surface is Birkhoff and Osceledets generic in almost every direction, 1–19 . arXiv:1305.1104 (2013)

  4. Candelas, P., de la Ossa, X., Green, P., Parkes, L.: A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359, 21–74 (1991)

    Article  MATH  Google Scholar 

  5. Chen, Y.-H., Yang, Y., Yui, N.: Monodromy of Picard–Fuchs differential equations for Calabi–Yau threefolds (with an appendix by Cord Erdenberger). J. Reine Angew. Math. 616, 167–203 (2008)

    MATH  MathSciNet  Google Scholar 

  6. Delecroix, V., Hubert, P., Lelièvre, S.: Diffusion for the periodic wind-tree model, 1–28. arXiv:1107.1810 to appear in Ann. Sci. Éc. Norm, Supér (2011)

  7. Deligne, P.: Un théorème de finitude pour la monodromie. Discrete groups in Geometry and Analysis, Birkhäuser, Progress in Math. 67, 1–19 (1987)

    Article  MathSciNet  Google Scholar 

  8. Doran, C., Morgan, J.: Mirror symmetry and integral variations of Hodge structure underlying one-parameter families of Calabi–Yau threefolds. Mirror symmetry, 517–537. AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI (2006)

  9. Eskin, A., Kontsevich, M., Zorich, A.: Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, 1–106. arXiv:1112.5872 to appear in Publ. Math. Inst, Hautes Études Sci (2011)

  10. Eskin, A., Mirzakhani, M.: Invariant and stationary measures for the \(SL(2,{\mathbb{R}})\) action on moduli space, 1–171. arXiv:1302.3320 (2013)

  11. Filip, S.: Semisimplicity and rigidity of the Kontsevich-Zorich cocycle, 1–38. arXiv:1307.7314 (2013)

  12. Forni, G.: Deviation of ergodic averages for area-preserving flows on surfaces of higher genus. Ann. Math. 155(1), 1–103 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Forni, G.: On the Lyapunov exponents of the Kontsevich-Zorich cocycle. In: Hasselblatt, B., Katok, A. (eds.) Handbook of Dynamical Systems, vol. 1B, pp. 549–580. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  14. Forni, G.: A geometrical criterion for the nonuniform hyperbolicity of the Kontsevich-Zorich cocycle. J. Mod. Dyn. 5, 355–395 (2011)

  15. Furman, A.: Random walks on groups and random transformations. In: Handbook of Dynamical Systems, vol. 1A, pp. 931–1014. North-Holland, Amsterdam (2002)

  16. Furstenberg, H.: Random walks and discrete subgroups of Lie groups. In: Advances in Probability and Related Topics, vol. 1, pp. 1–63. Dekker, New York (1971)

  17. Goldsheid, I., Margulis, G.: Lyapunov exponents of a product of random matrices. Uspekhi Mat. Nauk 44(5), 13–60 (1989) (Russian); English translation in Russian Math. Surveys 44(5), 11–71 (1989)

  18. Guivarc’h, Y., Raugi, A.: Products of random matrices: convergence theorems. In: Random Matrices and their Applications (Brunswick, ME, 1984), Contemp. Math., 50, pp. 31–54. Amer. Math. Soc., Providence, RI (1986)

  19. Guivarc’h, Y., Raugi, A.: Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes. Israel J. Math. 65, 165–196 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hubert, P., Schmidt, T.: An introduction to Veech surfaces. In: Hasselblatt, B., Katok, A. (eds.) Handbook of Dynamical Systems, pp. 501–526. Elsevier, Amsterdam (2006)

    Google Scholar 

  21. Kappes, A., Möller, M.: Lyapunov spectrum of ball quotients with applications to commensurability questions, 1–37. arXiv:1207.5433 (2012)

  22. Kontsevich, M.: Lyapunov exponents and Hodge theory. In: The Mathematical Beauty of Physics, Saclay, 1996. Adv. Ser. Math. Phys. 24, 318–332. World Scientific, River Edge (1997)

  23. Kontsevich, M.: On Kähler random walk and Lyapunov exponents, talk delivered at the conference. In: Control, Index, Traces and Determinants (May 27–31, 2013) in Honor of Jean-Michel Bismut, pdf file and video of the presentation available at the website. http://www.math.u-psud.fr/~repsurf/ERC/Bismutfest/Bismutfest.html

  24. Lanneau, E., Nguyen, D.-M.: Teichmüller curves generated by Weierstrass Prym eigenforms in genus three and genus four. J. Topol, 1–51. arXiv:1111.2299 (2011, to appear)

  25. Matheus, C., Möller, M., Yoccoz, J.-C.: A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces, 1–68. arXiv:1305.2033 (2013)

  26. McMullen, C.: Teichmüller curves in genus two: discriminant and spin. Math. Ann. 333, 87–130 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. McMullen, C.: Prym varieties and Teichmüller curves. Duke Math J. 133, 569–590 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Möller, M.: Prym covers, theta functions and Kobayashi geodesics in Hilbert modular surfaces. Am. J. Math. 1–26. arXiv:1111.2624 (2011, to appear)

  29. Movasati, H.: Modular-type functions attached to mirror quintic Calabi-Yau varieties, 1–23. http://arxiv.org/abs/1111.0357 (2011)

  30. Smillie, J., Weiss, B.: Characterizations of lattice surfaces. Invent. Math. 180, 535–557 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. van Enckevort, C., van Straten, D.: Monodromy calculations of fourth order equations of Calabi-Yau type. Mirror Symmetry, 539–559. AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence (2006)

  32. Voisin, C.: Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, 10. Société Mathématique de France, Paris, viii+595 pp. (2002) ISBN: 2-85629-129-5

  33. Zorich, A.: Asymptotic flag of an orientable measured foliation on a surface. Geom. Study Foliations (Tokyo, 1993), 479–498. World Sci. Publ, River Edge, NJ (1994)

  34. Zorich, A.: How do the leaves of a closed 1-form wind around a surface. In the collection: “Pseudoperiodic Topology”, AMS Translations, Ser. 2, 197, AMS, Providence, RI, 135–178 (1999)

  35. Zorich, A.: Flat surfaces, in collection “Frontiers in Number Theory, Physics and Geometry, vol. 1: On random matrices, zeta functions and dynamical systems”; Ecole de physique des Houches, France, March 9–21 2003; Cartier, P., Julia, B., Moussa, Vanhove, P. (eds.), 439–586. Springer, Berlin (2006)

Download references

Acknowledgments

The authors are thankful to Alex Furman for suggesting the strategy of the proof of Theorem 1, to Pascal Hubert and Erwan Lanneau for sharing their insights on the geometry of Prym Teichmüller curves of genus 4, to Martin Möller and Jean-Christophe Yoccoz for useful exchanges around the Galois-theoretical simplicity criterion in the article [25], and to Pascal Hubert and Julien Grivaux for a careful reading of earlier versions of this work. Research of the first author is partially supported by NSF Grants DMS 0244542, DMS 0604251 and DMS 0905912. The second author was partially supported by the French ANR Grant “GeoDyM” (ANR-11-BS01-0004) and by the Balzan Research Project of J. Palis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Matheus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskin, A., Matheus, C. A coding-free simplicity criterion for the Lyapunov exponents of Teichmüller curves. Geom Dedicata 179, 45–67 (2015). https://doi.org/10.1007/s10711-015-0067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0067-7

Keywords

Mathematics Subject Classification

Navigation