Skip to main content
Log in

Natural selection and genital variation: a role for the environment, parasites and sperm ageing?

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Male genitalia are more variable between species (and populations) than other organs, and are more morphologically complex in polygamous compared to monogamous species. Therefore, sexual selection has been put forward as the major explanation of genital variation and complexity, in particular cryptic female choice for male copulatory courtship. As cryptic female choice is based on differences between males it is somewhat paradoxical that there is such low within-species variation in male genitalia that they are a prime morphological identification character for animal species. Processes other than sexual selection may also lead to genitalia variation but they have recently become neglected. Here I focus on pleiotropy and natural selection and provide examples how they link genitalia morphology with genital environments. Pleiotropy appears to be important because most studies that specifically tested for pleiotropic effects on genital morphology found them. Natural selection likely favours certain genital morphology over others in various environments, as well as by reducing re-infection with sexually transmitted diseases or reducing the likelihood of fertilisation with aged sperm. Both pleiotropy and natural selection differ locally and between species so may contribute to local variation in genitalia and sometimes variation between monogamous and polygamous species. Furthermore, the multitude of genital environments will lead to a multitude of genital functions via natural selection and pleiotropy, and may also contribute to explaining the complexity of genitalia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alsterholm M, Flytström I, Leifsdottir R, Faergemann J, Bergbrant IM (2008) Frequency of bacteria, Candida and malassezia species in balanoposthitis. Acta Derm Venereol 88:331–336

    PubMed  Google Scholar 

  • Andrade CAC, Hatadani LM, Klaczko LB (2005) Phenotypic plasticity of the aedeagus of Drosophila mediopunctata: effect of the temperature. J Therm Biol 30:518–523

    Google Scholar 

  • Arnqvist G (1997) The evolution of animal genitalia: distinguishing between hypotheses by single species studies. Biol J Linn Soc 60:365–379

    Google Scholar 

  • Arnqvist G (1998) Comparative evidence for the evolution of genitalia by sexual selection. Nature 393:784–786

    CAS  Google Scholar 

  • Arnqvist G, Danielsson I (1999) Copulatory behavior, genital morphology, and male fertilization success in water striders. Evolution 53:147–156

    Google Scholar 

  • Arnqvist G, Thornhill R (1998) Evolution of animal genitalia: patterns of phenotypic and genotypic variation and condition dependence of genital and non-genital morphology in water strider (Heteroptera : Gerridae : Insecta). Genet Res 71:193–212

    Google Scholar 

  • Baczynska A, Fedder J, Schougaard H, Christiansen G (2007) Prevalence of mycoplasmas in the semen and vaginal swabs of Danish stallions and mares. Vet Microbiol 121:138–143

    PubMed  Google Scholar 

  • Barnes A, Siva-Jothy MT (2000) Density-dependent prophylaxis in the mealworm beetle Tenebrio molitor L (Coleoptera: Tenebrionidae): cuticular melanisation is an indicator of investment in immunity. Proc R Soc Lond B 267:177–182

    CAS  Google Scholar 

  • Beani L, Giusti F, Mercati D, Lupetti O, Paccagnini E, Turillazzi S, Dallai R (2005) Mating of Xenos vesparum (Rossi) (Strepsiptera, Insecta) revisited. J Morphol 265:291–303

    CAS  PubMed  Google Scholar 

  • Benhalima K, Moriyasu M (2001) Prevalence of bacteria in the spermathecae of female snow crab Chionoecetes opilio (Brachyura: Majidae). Hydrobiologia 449:261–266

    Google Scholar 

  • Blanckenhorn WU, Hosken DJ, Martin OY, Reim C, Teuschl Y, Ward PI (2002) The costs of copulating in the dung fly Sepsis cynipsea. Behav Ecol 13:353–358

    Google Scholar 

  • Blows MW (2002) Interaction between natural and sexual selection during the evolution of mate recognition. Proc R Soc Lond B 269:1113–1118

    Google Scholar 

  • Brennan P, Brennan LR, Prum RO, McCracken KG, Sorenson MD, Wilson RE, Birkhead TR (2007) Coevolution of male and female genital morphology in waterfowl. PLoS ONE 2:e418

    PubMed  Google Scholar 

  • Briskie JV, Montgomerie R (1997) Sexual selection and the intromittent organ of birds. J Avian Biol 28:73–86

    Google Scholar 

  • Carayon J (1966) Paragenital system. In: Usinger RL (ed) Monograph of the Cimicidae. Entomological Society of America, Philadelphia (PA)

    Google Scholar 

  • Carayon J (1977) Insémination extra-génitale traumatique. Traite des Zoologie, Anatomie, Systématique, Biologie PP Grassé (ed) Tome VIII Insectes: Gamétogenèses, Fécondation, Métamorphoses, Fascicule V-A, Masson et Cie, Paris, France, pp 349–390

  • Cloarec A, Rivault C, Fontaine F, Le Guyader A (1992) Cockroaches as carriers of bacteria in multi-family dwellings. Epidemiol Infect 109:483–490

    CAS  PubMed  Google Scholar 

  • Cordero Rivera A, Andres JA, Cordoba-Aguilar A, Utzeri C (2004) Postmating sexual selection: allopatric evolution of sperm competition mechanisms and genital morphology in calopterygid damselflies (Insecta: Odonata). Evolution 58:349–359

    CAS  PubMed  Google Scholar 

  • Crudgington HS, Siva-Jothy MT (2000) Genital damage, kicking and early death—the battle of the sexes takes a sinister turn in the bean weevil. Nature 407:855–856

    CAS  PubMed  Google Scholar 

  • Eberhard WG (1985) Sexual selection and animal genItalia. Harvard University Press, Cambridge, USA

    Google Scholar 

  • Eberhard WG (1996) Cryptic female choice: sexual selection by female control. Princeton University Press, NJ

    Google Scholar 

  • Eberhard WG (2004) Male–female conflict and genitalia: failure to confirm predictions in insects and spiders. Biol Rev 79:121–186

    PubMed  Google Scholar 

  • Eberhard WG (2006) Sexually antagonistic coevolution in insects is associated with only limited morphological diversity. J Evol Biol 19:657–681

    CAS  PubMed  Google Scholar 

  • Eberhard WG (2009) Static allometry and animal genitalia. Evolution 63:48–66

    PubMed  Google Scholar 

  • Eberhard WG, Huber BA, Rodriguez RLS, Briceno RD, Salas I, Rodriguez V (1998) One size fits all? relationships between the size and degree of variation in genitalia and other body parts in twenty species of insects and spiders. Evolution 52:415–431

    Google Scholar 

  • Elliott D, Kufera JA, Myers RAM (2000) The microbiology of necrotizing soft tissue infections. Am J Surgery 179:361–366

    CAS  Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, NJ

    Google Scholar 

  • Foster SA, Endler JA (eds) (1999) Geographic Variation in Behavior; Perspectives on Evolutionary Mechanisms. Oxford University Press, NY, USA

    Google Scholar 

  • Fraser IS, Lahteenmaki P, Elomaa K, Lacarra M, Mishell DR, Alvarez F, Brache V, Weisberg E, Hickey M, Vallentine P, Nash HA (1999) Variations in vaginal epithelial surface appearance determined by colposcopic inspection in healthy, sexually active women. Human Reprod 14:1974–1978

    CAS  Google Scholar 

  • Gage MJG (1992) Removal of rival serm dring cpulation in a bettle, Tenebrio molitor. Anim Behav 44:587–589

    Google Scholar 

  • Haine ER, Rolff J, Siva-Jothy MT (2007) Functional consequences of blood clotting in insects. Dev Comp Immunol 31:456–464

    CAS  PubMed  Google Scholar 

  • Hamilton WD (1990) Mate choice near or far. Am Zool 30:341–352

    Google Scholar 

  • Hirsh DC (1999) The genital tract as a microbial habitat, pp. 190–191, Veterinary Microbiology (DC Hirsh, YC Zee). Blackwell Science, Oxford, UK

    Google Scholar 

  • Hosken DJ, Stockley P (2004) Sexual selection and genital evolution. Trends Ecol Evol 19:87–93

    PubMed  Google Scholar 

  • Houde AE (1997) Sex, color, and mate choice in guppies. Princeton University Press, NJ

    Google Scholar 

  • House CM, Simmons LW (2003) Genital morphology and fertilization success in the dung beetle Onthophagus taurus: an example of sexually selected male genitalia. Proc R Soc Lond B 270:447–455

    Google Scholar 

  • House CM, Simmons LW (2005) The evolution of male genitalia: patterns of genetic variation and covariation in the genital sclerites of the dung beetle Onthophagus taurus. J Evol Biol 18:1281–1292

    CAS  PubMed  Google Scholar 

  • Hribar L (1994) Geographic variation of male genitalia of Anopheles nuneztovari (Diptera: Culicidae). Mosquito Sys 26:132–144

    Google Scholar 

  • Huber BA (2003) Rapid evolution and species-specificity of arthropod genitalia: fact or artifact? Organ Div Evol 3:63–71

    Google Scholar 

  • Hurd H (1998) Parasite manipulation of insect reproduction: who benefits? Parasitology 116:S13–S21

    PubMed  Google Scholar 

  • Hurst LD (1990) Parasite diversity and the evolution of diploidy, multicellularity and anisogamy. J Theor Biol 144:429–443

    CAS  PubMed  Google Scholar 

  • Hurst GDD, Webberley KM, Knell R (2005) The role of parasites of insect reproduction in the diversification of insect reproductive processes. In: Fellowes MDE, Hollaway GJ, Rolff J (eds) Insect evolutionary ecology. Royal Entomological Society, London

    Google Scholar 

  • Jennions MD, Kelly CD (2002) Geographical variation in male genitalia in Brachyrhaphis episcopi (Poeciliidae): is it sexually or naturally selected? Oikos 97:79–86

    Google Scholar 

  • Kaltz O, Shykoff JA (2001) Male and female Silene latifolia plants differ in per-contact risk of infection by a sexually transmitted disease. J Ecol 89:99–109

    Google Scholar 

  • Kamimura Y (2007) Twin intromittent organs of Drosophila for traumatic insemination. Biol Lett 3:401–404

    PubMed  Google Scholar 

  • Kelly CD, Godin J-GJ, Abdallah G (2000) Geographic variation in the male intromittent organ of the Trinidadian Guppy (Poecilia Reticulata). Can J Zool 78:1674–1680

    Google Scholar 

  • Knell RJ, Webberley KM (2004) Sexually transmitted diseases of insects: distribution, evolution, ecology and host behaviour. Biol Rev 79:557–581

    PubMed  Google Scholar 

  • Korb J (2003) Thermoregulation and ventilation of termite mounds. Naturwissenschaften 90:212–219

    CAS  PubMed  Google Scholar 

  • Lachaise D, LeMeunier F, Veuille M (1981) Clinal variations in male genitalia in Drosophila teissieri Tsacas. Am Nat 117:600–608

    Google Scholar 

  • Langerhans RB, Layman CA, Dewitt TJ (2005) Male genital size reflects a tradeoff between attracting mates and avoiding predators in two live-bearing fish species. Proc Natl Acad Sci USA 102:7618–7623

    CAS  PubMed  Google Scholar 

  • Lazzaro BP (2005) Elevated polymorphism and divergence in the class C scavenger receptors of Drosophila melanogaster and D. simulans. Genetics 169:2023–2034

    CAS  PubMed  Google Scholar 

  • Lazzaro BP, Sackton TB, Clark AG (2006) Genetic variation in Drosophila melanogaster resistance to infection: a comparison across bacteria. Genetics 174:1539–1554

    CAS  PubMed  Google Scholar 

  • Lindeboom M (1998) Post-copulatory behaviour in Calopteryx females (Insecta, Odonata, Calopterygidae). Int J Odonatol 1:175–184

    Google Scholar 

  • Lockhart AB, Thrall PH, Antonovics J (1996) Sexually transmitted diseases in animals: ecological and evolutionary implications. Biol Rev 71:415–471

    CAS  PubMed  Google Scholar 

  • Lung O, Kuo L, Wolfner MF (2001) Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. J Insect Physiol 47:617–622

    CAS  PubMed  Google Scholar 

  • Mann T (1984) Spermatophores: development, structure, biochemical attributes, and role in the transfer of spermatozoa. Springer, New York

    Google Scholar 

  • Marius-Jestin V, Le menec M, Thibault E, Moisan JC, L’Hospitalier R (1987) Normal phallus flora of the gander. J Vet Med B 34:67–78

    Article  CAS  Google Scholar 

  • Mikolajewski DJ, Rolff J (2004) Benefits of morphological defence demonstrated by direct manipulation in larval dragonflies. Evol Ecol Res 6:619–626

    Google Scholar 

  • Moczek AP, Nijhout HF (2004) Trade-offs during the development of primary and secondary sexual traits in a horned beetle. Am Nat 163:184–191

    PubMed  Google Scholar 

  • Mound LA, Crespi BJ, Tucker A (1998) Polymorphism and kleptoparasitism in thrips (Thysanoptera: Phlaeothripidae) from woody galls on Casuarina trees. Austral J Entomol 37:8–16

    Google Scholar 

  • Müller HJ (1954) der Saisondimorphismus bei Zikaden der Gattung Euscelis Brullé. Beitr Entomol (Berl) 4:1–55

    Google Scholar 

  • Müller HJ (1960) Über morphologische Folgen der Parasitierung von Euscelis-Männchen (Homoptera Auchenorrhyncha) mit Dryiniden-Larven. Z Morph Ökol Tiere 49:32–46

    Google Scholar 

  • Müller HJ (1962) Die Variabilität der Genitalstrukturen bei Zikaden und ihre biologische und taxonomische Bedeutung. Mittbl Insektenkd 6:36–42

    Google Scholar 

  • Nalepa CA, Jones SC (1991) Evolution of monogamy in termites. Biol Rev 66:83–97

    Google Scholar 

  • Neufeld CJ, Palmer AR (2008) Precisely proportioned: intertidal barnacles alter penis form to suit coastal wave action. Proc R Soc Lond B 275:1081–1087

    Google Scholar 

  • Nunez JT, Delgado M, Giron H, Pino G (2004) Prostitution and other cofactors in preinvasive and invasive lesions of the cervix. Austral NZ J Obstetr Gynaecol 44:239–243

    Google Scholar 

  • Otti O, Naylor RA, Siva-Jothy MT, Reinhardt K (2009) Bacteriolytic activity in the ejaculate of an insect. Am Nat (in press)

  • Parejko K (1991) Predation by chaoborids on typical and spined Daphnia pulex. Freshw Biol 25:211–217

    Google Scholar 

  • Parzer HF, Moczek AP (2008) Rapid antagonistic coevolution between primary and secondary sexual characters in horned beetles. Evolution 62:2423–2428

    PubMed  Google Scholar 

  • Poiani A (2006) Complexity of seminal fluid: a review. Behav Ecol Sociobiol 60:289–310. doi:10.1007/s00265-006-0178-0

    Google Scholar 

  • Ramos M, Irschick DJ, Christenson TE (2004) Overcoming an evolutionary conflict: removal of a reproductive organ greatly increases locomotor performance. Proc Natl Acad Sci USA 101:4883–4887

    CAS  PubMed  Google Scholar 

  • Reinhardt R (1969) Ueber den Einfluss der Temperatur auf den Saisondimorphismus von Araschnia levana L. (Lepidopt. Nymphalidae) nach photoperiodischer Diapause-Induktion. Zool Jahrb Physiol Anat Tiere 75:41–75

    Google Scholar 

  • Reinhardt K (2007) Evolutionary consequences of sperm cell aging. Q Rev Biol 82:375–393

    PubMed  Google Scholar 

  • Reinhardt K, Siva-Jothy MT (2005) An advantage for young sperm in the house cricket Acheta domesticus. Am Nat 165:718–723

    PubMed  Google Scholar 

  • Reinhardt K, Naylor R, Siva-Jothy MT (2003) Reducing a cost of traumatic insemination: female bedbugs evolve a unique organ. Proc R Soc Lond B 270:2371–2375

    Google Scholar 

  • Reinhardt K, Naylor RA, Siva-Jothy MT (2005) Potential sexual transmission of environmental microbes in a traumatically inseminating insect. Ecol Entomol 30:607–611

    Google Scholar 

  • Reinhardt K, Harney E, Naylor R, Gorb S, Siva-Jothy MT (2007) Female-limited polymorphism in the copulatory organ of a traumatically inseminating insect. Am Nat 170:931–935

    PubMed  Google Scholar 

  • Reinhardt K, Naylor RA, Siva-Jothy MT (2009) Situation exploitation: higher male mating success when female resistance is reduced by feeding. Evolution 63:29–39

    PubMed  Google Scholar 

  • Ren C, Webster P, Finkel SE, Tower J (2007) Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab 6:144–152

    CAS  PubMed  Google Scholar 

  • Rolff J, Siva-Jothy MT (2002) Copulation corrupts immunity: a mechanism for a cost of mating in insects. Proc Natl Acad Sci USA 99:9916–9918

    CAS  PubMed  Google Scholar 

  • Rolff J, Siva-Jothy MT (2003) Invertebrate ecological immunology. Science 301:472–475

    CAS  PubMed  Google Scholar 

  • Rönn J, Katvala M, Arnqvist G (2007) Coevolution between harmful male genitalia and female resistance in seed beetles. Proc Natl Acad Sci USA 104:10921–10925

    PubMed  Google Scholar 

  • Ryan MJ, Fox JH, Wilczynski W, Rand AS (1990) Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature 343:66–67

    CAS  PubMed  Google Scholar 

  • Ryder JJ, Miller MR, White A, Knell RJ, Boots M (2007) Host-parasite population dynamics under combined frequency- and density-dependent transmission. Oikos 116:2017–2026

    Google Scholar 

  • Schleihauf E, Watkins RE, Plant AJ (2009) Heterogeneity in the spatial distribution of bacterial sexually transmitted infections. Sex Trans Infect 85:45–49

    CAS  Google Scholar 

  • Schwebke JR, Hillier SL, Sobel JD, McGregor JA, Sweet RL (1996) Validity of the vaginal gram stain for the diagnosis of bacterial vaginosis. Obstetrics Gynecol 88:573–576

    CAS  Google Scholar 

  • Sheldon BC (1993) Sexually transmitted diseases in birds: occurrence and evolutionary significance. Phil Trans R Soc Lond B 339:491–497

    CAS  Google Scholar 

  • Siva-Jothy MT (2000) The young sperm gambit. Ecol Lett 3:172–174

    Google Scholar 

  • Siva-Jothy MT, Tsubaki Y, Hooper RE (1998) Decreased immune response as a proximate cost of copulation and oviposition in a damselfly. Physiol Entomol 23:274–277

    Google Scholar 

  • Snook RR, Hosken DJ (2004) Sperm death and dumping in Drosophila. Nature 428:939–941

    CAS  PubMed  Google Scholar 

  • Sota T, Kubota K (1998) Genital lock-and-key as a selective agent against hybridization. Evolution 52:1507–1513

    Google Scholar 

  • Soto I, Carreira VP, Fanana JJ, Hasson E (2007) Evolution of male genitalia: environmental and genetic factors affect genital morphology in two Drosophila sibling species and their hybrids. BMC Evol Biol 7:77

    PubMed  Google Scholar 

  • Tarin JJ, Perez-Albala S, Aguilar A, Minarro J, Hermenegildo C, Cano A (1999) Long-term effects of postovulatory aging of mouse oocytes on offspring: a two-generational study. Biol Reprod 61:1347–1355

    CAS  PubMed  Google Scholar 

  • Tarin JJ, Perez-Albala S, Cano A (2000) Consequences on offspring of abnormal function in ageing gametes. Hum Reprod Update 6:532–549

    CAS  PubMed  Google Scholar 

  • Tarin JJ, Perez-Albala S, Perez-Hoyos S, Cano A (2002) Postovulatory aging of oocytes decreases reproductive fitness and longevity of offspring. Biol Reprod 66:495–499

    CAS  PubMed  Google Scholar 

  • Tatsuta H, Akimoto S (1998) Sexual differences in the pattern of spatial variation in the brachypterous grasshopper Podisma sapporensis (Orthoptera: Podisminae). Can J Zool 76:1450–1455

    Google Scholar 

  • Tatsuta H, Mizota K, Akimoto SI (2001) Allometric patterns of heads and genitalia in the stag beetle Lucanus maculifemoratus (Coleoptera: Lucanidae). Annls Entomol Soc Am 94:462–466

    Google Scholar 

  • Tatsuta H, Fujimoto K, Mizota K, Reinhardt K, Akimoto SI (2007) Distinctive developmental variability of genital parts in the sexually dimorphic beetle, Prosopocoilus inclinatus (Coleoptera: Lucanidae). Biol J Linn Soc 90:573–581

    Google Scholar 

  • Tollrian R, Harvell CD (eds) (1999) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Valimaki P, Kaitala A (2006) Does a lack of mating opportunities explain monandry in the green-veined white butterfly (Pieris napi)? Oikos 115:110–116

    Google Scholar 

  • van Damme L, Niruthisard S, Atisook R, Boer K, Dally L, Laga M, Lange JMA, Karam M, Perriens JH (1998) Safety evaluation of nonoxynol-9 gel in women at low risk of HIV infection. AIDS 12:433–437

    PubMed  Google Scholar 

  • Vermitsky JP, Self MJ, Chadwick SG, Trarna JP, Adelson ME, Mordechai E, Gygax SE (2008) Survey of vaginal-flora candida species isolates from women of different age groups by use of species-specific PCR detection. J Clin Microbiol 46:1501–1503

    PubMed  Google Scholar 

  • Virecoulon F, Wallet F, Fruchart-Flamenbaum A, Rigot J-M, Peers M-C, Mitchell V, Courcol RJ (2005) Bacterial flora of the low male genital tract in patients consulting for infertility. Andrologia 37:160–165

    CAS  PubMed  Google Scholar 

  • Wadsworth J, Hickman M, Johnson AM, Wellings K, Field J (1996) Geographic variation in sexual behaviour in Britain: Implications for sexually transmitted disease epidemiology and sexual health promotion. AIDS 10:193–199

    CAS  PubMed  Google Scholar 

  • Webberley KM, Tinsley MC, Sloggett JJ, Majerus MEN, Hurst GDD (2006) Spatial variation in the incidence of a sexually transmitted parasite of the ladybird beetle Adalia bipunctata (Coleoptera: Coccinellidae). Eur J Entomol 103:793–797

    Google Scholar 

  • Welch VL, Sloggett JJ, Webberley KM, Hurst GDD (2001) Short-range clinal variation in the prevalence of a sexually transmitted fungus associated with urbanisation. Ecol Entomol 26:547–550

    Google Scholar 

  • Yezerski A, Gilmor TP, Stevens L (2004) Genetic analysis of benzoquinone production in Tribolium confusum. J Chem Ecol 5:1035–1044

    Google Scholar 

Download references

Acknowledgement

I thank O. Otti, J. Rolff and Mike Siva-Jothy for discussion and critical reading, as well as B. Huber and another reviewer for helpful comments on the manuscript. I thank D. Joly and M. Schmitt for organising the Symposium on genitalia evolution. L. Holman helped with the Afrocimex dissections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Reinhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhardt, K. Natural selection and genital variation: a role for the environment, parasites and sperm ageing?. Genetica 138, 119–127 (2010). https://doi.org/10.1007/s10709-009-9360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-009-9360-4

Keywords

Navigation