Skip to main content
Log in

The effect of different glaciation patterns over the current genetic structure of the southern beech Nothofagus antarctica

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Different regional patterns of glaciation are expected to have brought about a differential effect on the present genetic structure of natural tree populations in the temperate regions. The aim of the present study is to test this hypothesis in Nothofagus antarctica, a key tree species of the temperate forests of southern South America. An almost continuous ice layer characterized the region of the Andes south of 41°S, while towards northern latitudes the pattern was more fragmented. Therefore, a higher chance for the location of larger or more numerous glacial refuges in the north of the Argentinean range, leads us to predict a higher genetic diversity in this region. Twelve natural populations of N. antarctica were sampled along the northern half of its Argentinean range, including six above 41°S and six below that latitude. Sampled populations were genetically characterized through cpDNA and isozyme gene markers. Both groups of populations were compared by means of several diversity and differentiation parameters. A genetic structure analysis was conducted with isozyme data through clustering and Bayesian approaches. Based on three polymorphic chloroplast regions, only two haplotypes were distinguished, one corresponding to the nine northernmost sampled populations and the other to the two southernmost ones. Only the population located between those two groups resulted polymorphic. AMOVA analyses also revealed a latitudinal genetic structure for the populations surveyed, and higher levels of genetic variation were recognized in the northern populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashworth AC, Markgraf V, Villagrán C (1991) Late quaternary climatic history of the Chilean Channels based on fossil pollen and beetle analyses, with an analysis of the modern vegetation and pollen rain. J Quat Sci 6:279–291. doi:10.1002/jqs.3390060403

    Article  Google Scholar 

  • Avise JC (1994) Molecular markers. Natural History and Evolution, Chapman and Hall, New York

    Google Scholar 

  • Birky CW (1995) Uniparental inheritance of mithocondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92:11331–11338. doi:10.1073/pnas.92.25.11331

    Article  PubMed  CAS  Google Scholar 

  • Cheliak WM, Pitel JA (1984) Techniques for starch gel electrophoresis of enzymes of forest tree species. Information Report PI-X-42. Petawawa National Forestry Institute, Canadian Forestry Service, p 49

    Google Scholar 

  • Clegg MT, Gaut BS Learn GH Jr, Morton BR (1994) Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci USA 91:6795–6801

    Google Scholar 

  • Corander J, Waldmann P, Sillanpää MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374

    PubMed  CAS  Google Scholar 

  • Deguilloux MF, Dumolin-Lapègue L, Gielly L, Grivet D, Petit JR (2003) A set of primers for the amplification of chloroplast microsatellites in Quercus. Primer Note Mol Ecol Notes 3:24–27. doi:10.1046/j.1471-8286.2003.00339.x

    Article  CAS  Google Scholar 

  • Demesure B, Sodzi N, Petit JR (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131. doi:10.1111/j.1365-294X.1995.tb00201.x

    Article  PubMed  CAS  Google Scholar 

  • Demesure B, Comps B, Petit JR (1996) Chloroplast DNA phylogeography of the common beech (Fagus sylvatica L.) in Europe Evolution. Int J Org Evol 50:2515–2520. doi:10.2307/2410719

    CAS  Google Scholar 

  • Donat A (1933) Sind Drosera uniflora und Pinguicula antarctica bizentrische Typen? Ber Dtsch Bot Ges 2:67–77

    Google Scholar 

  • Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256. doi:10.1007/BF00220937

    Article  CAS  Google Scholar 

  • Dumolin-Lapègue S, Demesure B, Fineschi S, Le Corre V, Petit RJ (1997) Phylogeographic structure of white oaks throughout the European continent. Genetics 146:1475–1487

    PubMed  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan trees [Argania spinosa (L.) Skeels] endemic of Morocco. Theor Appl Genet 92:832–839. doi:10.1007/BF00221895

    Article  Google Scholar 

  • Excoffier L, Smouse P, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed  CAS  Google Scholar 

  • Flint RF, Fidalgo F (1964) Glacial geology of the east flank of the Argentine Andes between latitude 39°10′ S and latitude 41°20′ S. Geol Soc Am Bull 75:335–352. doi:10.1130/0016-7606(1964)75[335:GGOTEF]2.0.CO;2

    Article  Google Scholar 

  • Flint RF, Fidalgo F (1969) Glacial drift in the eastern Argentine Andes between latitude 41°10′ S and latitude 43°10′ S. Geol Soc Am Bull 80:1043–1052. doi:10.1130/0016-7606(1969)80[1043:GDITEA]2.0.CO;2

    Article  Google Scholar 

  • Gillet E (1997) GSED Genetic Structures from Electrophoresis Data, version 1.1d, program and user’s manual. Institut für Forstgenetik und Forstpflanzenzüchtung, Faculty of Forest Genetics and Forest Ecology, University of Göttingen, URL: http://www.uni-forst.gwdg.de/forst/fg/index.htm

  • Gregorius H-R (1974) On the concept of genetic distance between populations based on gene frequencies. IUFRO joint meeting of working parties on population and ecological genetics, breeding theory and progeny testing. Department of Forest Genetics, Royal College of Forestry, Stockholm, pp 17–26

    Google Scholar 

  • Gregorius H-R (1985) Measurement of genetic differentiation in plant populations. In: Gregorius H-R (ed) Population genetics in forestry (Lecture Notes in Biomathematics), vol 60, pp 276–285

  • Grivet D, Heinze B, Vendramin GG, Petit RJ (2001) Genome walking with consensus primers: application to the large single copy region of chloroplast DNA. Mol Ecol Notes 1:345–349. doi:10.1046/j.1471-8278.2001.00107.x

    Article  CAS  Google Scholar 

  • Grivet D, Deguilloux M-F, Petit RJ, Sork V (2006) Contrasting patterns of historical colonization in white oaks (Quercus spp.) in California and Europe. Mol Ecol 15:4085–4093. doi:10.1111/j.1365-294X.2006.03083.x

    Article  PubMed  CAS  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124. doi:10.1007/BF00120641

    Google Scholar 

  • Heinze B (2007) A data base of PCR primers for the chloroplast genomes of higher plants. Plant Methods 3:4. http://www.plantmethods.com/content/3/1/4. doi:10.1186/1746-4811-3-4

  • Heusser CJ (1983) Quaternary pollen record from Laguna Tagua Tagua, Chile. Science 219:1429–1432. doi:10.1126/science.219.4591.1429

    Article  PubMed  Google Scholar 

  • Heusser CJ (1984) Late-glacial—Holocene climate of the Lake District of Chile. Quat Res 22:77–90. doi:10.1016/0033-5894(84)90008-5

    Article  Google Scholar 

  • Hollin JT, Schilling DH (1981) Late Wisconsin-Weichselian mountain glaciers and small ice caps. In: Denton GH, Hughes TJ (eds) Late Wisconsin-Weichselian mountain glaciers and small ice caps. The Last Great Ice Sheets. Wiley, New York, pp 179–206

    Google Scholar 

  • Hulbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586. doi:10.2307/1934145

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA 3: integrated software for molecular evolutionary genetic analysis and sequence alignment. Brief Bioinform 5:150–163. doi:10.1093/bib/5.2.150

    Article  PubMed  CAS  Google Scholar 

  • Liston A (1992) Variation in the chloroplast genes rpoC1 and rpoC2 of the genus Astralagus (Fabaceae): evidence from restriction site mapping of a PCR-amplified fragment. Am J Bot 79:953–961. doi:10.2307/2445007

    Article  CAS  Google Scholar 

  • Magni CR, Ducuoso A, Caron H, Petit RJ, Kremer A (2005) Chloroplast DNA variation of Quercus rubra Lin North America and comparison with other Fagaceae. Mol Ecol 14:513–524. doi:10.1111/j.1365-294X.2005.02400.x

    Article  PubMed  CAS  Google Scholar 

  • Marchelli P, Gallo LA (2006) Multiple ice-age refuges in a southern beech of South America as evidenced by chloroplast DNA markers. Conserv Genet 7:591–603. doi:10.1007/s10592-005-9069-6

    Article  Google Scholar 

  • Marchelli P, Gallo LA, Scholz F, Ziegenhagen B (1998) Chloroplast DNA markers reveal a geographical divide across Argentinean southern beech Nothofagus nervosa (Phil.) Dim. et Mil. distribution area. Theor Appl Genet 97:642–646. doi:10.1007/s001220050940

    Article  CAS  Google Scholar 

  • Markgraf V (1984) Late pleistocene and holocene vegetation history of temperate Argentina: Lago Morenito, Bariloche. Diss Bot 72 (Festschrift Welten), pp 235–254

  • Markgraf V (1987) Paleoenvironmental changes at the northern limit of the subantarctic Nothofagus forest, lat 37°, Argentina. Quat Res 28:119–129. doi:10.1016/0033-5894(87)90037-8

    Article  Google Scholar 

  • Markgraf V, D’Antoni HL (1978) Pollen flora of Argentina. The University of Arizona Press, Tucson

    Google Scholar 

  • Markgraf V, Bianchi MM (1999) Paleoenvironmental changes during the last 17, 000 years in western Patagonia: Mallín Aguado, Province of Neuquén, Argentina. Bamberger Geogr Schr 19:175–193

    Google Scholar 

  • Markgraf V, Bradbury JP, Fernández J (1986) Bajada de Rahue, Province of Neuquén, Argentina: an interstadial deposit in northern Patagonia. Palaeogeogr Palaeoclimatol Palaeoecol 56:251–258. doi:10.1016/0031-0182(86)90097-0

    Article  Google Scholar 

  • Markgraf V, Romero EJ, Villagrán C (1996) The history and paleoecology of south American Nothofagus forests biogeography of Nothofagus Forests. In: Veblen TT (ed) The ecology and biogeography of Nothofagus Forests. Yale University Press, New Haven, pp 354–386

    Google Scholar 

  • Mátyás G, Sperisen C (2001) Chloroplast DNA polymorphisms provide evidence for postglacial re-colonization of oaks (Quercus spp.) across the Swiss Alps. Theor Appl Genet 102:12–20. doi:10.1007/s001220051613

    Article  Google Scholar 

  • Millerón M, Gallo L, Marchelli P (2008) The effect of volcanism on postglacial migration and seed dispersal. A case study in southern South America. Tree Genet Genomes 4:435–443. doi:10.1007/s11295-007-0121-1

    Article  Google Scholar 

  • Moritz C (1994) Defining “Evolutionary Significant Units” for conservation. Trends Ecol Evol 9:373–375. doi:10.1016/0169-5347(94)90057-4

    Article  Google Scholar 

  • Olondriz J, Brunini C (1998) Transcoord: Manual del Usuario, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata

  • Pastorino MJ, Gallo LA (2002) Quaternary evolutionary history of Austrocedrus chilensis, a cypress native to the Andean-Patagonian Forest. J Biogeogr 29:1167–1178. doi:10.1046/j.1365-2699.2002.00731.x

    Article  Google Scholar 

  • Pastorino MJ, Gallo LA, Hattemer HH (2004) Genetic variation in natural populations of Austrocedrus chilensis, a cypress of the Andean-Patagonian Forest. Biochem Syst Ecol 32:993–1008. doi:10.1016/j.bse.2004.03.002

    Article  CAS  Google Scholar 

  • Pastorino MJ, Marchelli P, Milleron M, Gallo LA (2008) Inheritance of isozyme variants in Nothofagus antarctica (G.Forster) Oersted. Basic Appl Genet (in press)

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855. doi:10.1046/j.1523-1739.1998.96489.x

    Article  Google Scholar 

  • Petit RJ, Csaikl U, Bordács S et al (2002) Chloroplast DNA variation in European white oaks. Phylogeographyand patterns of diversity based on data from over 2600 populations. For Ecol Manage 156:5–26. doi:10.1016/S0378-1127(01)00645-4

    Article  Google Scholar 

  • Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701. doi:10.1111/j.1365-294X.2004.02410.x

    Article  PubMed  CAS  Google Scholar 

  • Pons O, Petit RJ (1995) Estimation, variance and optimal sampling of gene diversityI. Haploid locus. Theor Appl Genet 90:462–470. doi:10.1007/BF00221991

    Article  Google Scholar 

  • Premoli AC, Kitzberger T, Veblen TT (2000) Isozyme variation and recent biogeographical history of the long-lived conifer Fitzroya cupressoides. J Biogeogr 27:251–260. doi:10.1046/j.1365-2699.2000.00402.x

    Article  Google Scholar 

  • Premoli AC, Souto CP, Rovere AE, Allnut TR, Newton AC (2002) Patterns of isozyme variation as indicators of biogeographic history in Pilgerodendron uviferum (D.Don) Florin. Divers Distrib 8:57–66. doi:10.1046/j.1472-4642.2002.00128.x

    Article  Google Scholar 

  • Poulik MD (1959) Starch gel electrophoresis in a discontinuous system of buffers. Nature 180:1477–1478. doi:10.1038/1801477a0

    Article  Google Scholar 

  • Ramírez C, Correa M, Figueroa H, San Martín J (1985) Variación del hábito y hábitat de Nothofagus antarctica en el centro sur de Chile. Bosque 6:55–73

    Google Scholar 

  • SAS Institute Inc (1989) SAS/STAT® User’s Guide, Version 6, Fourth Edition, Volume 2, Cary, NC. SAS Institute Inc., 846 pp

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. W.H. Freeman, San Francisco

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research, 2nd edn. Freeman, San Francisco

    Google Scholar 

  • Soltis DE, Gitzendanner MA, Strenge DD, Soltis PS (1997) Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America. Plant Syst Evol 206:353–373. doi:10.1007/BF00987957

    Article  Google Scholar 

  • Souza-Chies TT, Bittar G, Nadot S, Carter L, Besin E, Lejeune B (1997) Phylogenetic analysis of Iridaceae with parsimony and distance methods using the plastid gene rps4. Plant Syst Evol 204:109–123. doi:10.1007/BF00982535

    Article  Google Scholar 

  • Stecconi M, Marchelli P, Puntieri J, Picca P, Gallo LA (2004) Natural hybridization between a deciduous (Nothofagus antarctica, Nothofagaceae) and an evergreen (N. dombeyi) forest tree species as evidenced by morphological and isoenzymatic traits. Ann Bot (Lond) 94:775–786. doi:10.1093/aob/mch205

    Article  CAS  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109. doi:10.1007/BF00037152

    Article  PubMed  CAS  Google Scholar 

  • Vendramin GG, Anzidei M, Madaghiele A, Bucci G (1998) Distribution of genetic diversity in Pinus pinaster Aitas revealed by chloroplast microsatellites. Theor Appl Genet 97:456–463. doi:10.1007/s001220050917

    Article  CAS  Google Scholar 

  • Villagrán C (1991) Historia de los bosques templados del sur de Chile durante el Tardiglacial y Postglacial. Rev Chil Hist Nat 64:447–460

    Google Scholar 

  • Weising K, Gardner RC (1999) A set of conserved PCR primer for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19. doi:10.1139/gen-42-1-9

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, vol. 4 Variability within and among natural populations. The University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank A. Aparicio, M. M. Azpilicueta, M. Huentú, F. Izquierdo, A. Martínez, A. Martinez Meier and M. Sá for their help in the bud collection. This research was financed by Instituto Nacional de Tecnología Agropecuaria (INTA) through the project PATNO13 “Productividad y efectos ambientales en ñirantales”. The ABI3100 sequencer was acquired in the frame of the project PME70 (ANPCyT) between the Universidad Nacional del Comahue - CRUB Bariloche and INTA EEA Bariloche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario J. Pastorino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastorino, M.J., Marchelli, P., Milleron, M. et al. The effect of different glaciation patterns over the current genetic structure of the southern beech Nothofagus antarctica . Genetica 136, 79–88 (2009). https://doi.org/10.1007/s10709-008-9314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9314-2

Keywords

Navigation