Skip to main content
Log in

Exploring job centers by accessibility using fuzzy set approach: the case study of the Columbus MSA

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

When comparing accessibility, the interpretation of results is complex because of lack of standard or universal norm. This uncertainty issue of the distinction from the lack of standard can be solved using the multi-level approach of fuzzy set: universal, relative, and absolute index. Since a fuzzy set approach deals with the vagueness and indiscernibility of accessibility index, the proposed approach suggests a better solution to classify the index than a crisp set or even a single-level fuzzy set approach. In this study, we evaluate job accessibility of locations in the Columbus MSA in Ohio, USA for 18 worker groups. The uncertain distinction between strong/weak, rich/poor, and higher/lower accessibility is improved by the multi-level approach. Moreover, this study attempts to enhance our understanding of spatial structure of job accessibility disaggregated by occupation type and gender.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aerts, J. C. J. H., Goodchild, M. F., & Heuvelink, G. B. M. (2003). Accounting for spatial uncertainty in optimization with spatial decision support systems. Transactions in GIS, 7(2), 211–230.

    Article  Google Scholar 

  • Ahlqvist, O. (2005). Using uncertain conceptual spaces to translate between land cover categories. International Journal of Geographical Information Science, 19(7), 831–857.

    Article  Google Scholar 

  • Alonso, W. A. (1964). Location and land use. Cambridge, MA: Harvard University Press.

    Book  Google Scholar 

  • Armstrong, R. B. (1979). National trends in office construction, employment, and headquarter location in U.S. metropolitan areas. In Spatial patterns of office growth and location. P. W. Daniels (Ed.). New York: Wiley.

  • Ban, H., & Ahlqvist, O. (2008). Representing and negotiating uncertain geospatial concepts—where are the exurban areas? Computers, Environment and Urban Systems. doi:10.1016/j.compenvurbsys.2008.10.001.

  • Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. Journal of Photogrammetry and Remote Sensing, 58(3–4), 239–258.

    Article  Google Scholar 

  • Buchanan, J. M. (1965). An economic theory of clubs. Economica, 32(125), 1–14.

    Article  Google Scholar 

  • Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographical information systems. Oxford: Oxford University Press.

    Google Scholar 

  • Burrough, P. A., van Gaans, P. F. M., & Hootsmans, R. (1997). Continuous classification in soil survey: Spatial correlation, confusion and boundaries. Geoderma, 77(2–4), 115–135.

    Article  Google Scholar 

  • Burrough, P. A., Wilson, J. P., van Gaans, P. F. M., & Hansen, A. J. (2001). Fuzzy k-means classification of topo-climatic data as an aid to forest mapping in the Greater Yellowstone Area, USA. Landscape Ecology, 16(6), 523–546.

    Article  Google Scholar 

  • Cervero, R. (1989a). America’s Suburban Centers: A study of the land-transportation link. Boston: Unwin-Hyman.

    Google Scholar 

  • Cervero, R. (1989b). Jobs-housing balancing and regional mobility. Journal of the American Planning Association, 55(2), 136–150.

    Article  Google Scholar 

  • Cervero, R. (1996). Mixed land-uses and commuting: Evidence from the American housing survey. Transportation Research Part A—Policy and Practice, 30(5), 361–377.

    Article  Google Scholar 

  • Cervero, R., Rood, T., & Appleyard, B. (1999). Tracking accessibility: Employment and housing opportunities in the San Francisco Bay Area. Environment and Planning A, 31(7), 1259–1278.

    Article  Google Scholar 

  • Chen, Y. L., & Huang, T. C. K. (2008). A novel knowledge discovering model for mining fuzzy multi-level sequential patterns in sequence databases. Data and Knowledge Engineering, 66(3), 349–367.

    Article  Google Scholar 

  • Clark, D. (1982). Urban geography. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Clark, W. (2000). Monocentric to polycentric: New urban forms and old paradigm. In G. Bridge & S. Watson (Eds.), A companion to the city. Oxford, UK: Blackwell.

    Google Scholar 

  • Cover, T. M., & Thomas, J. A. (2006). Elements of information theory. New York: Wiley.

    Google Scholar 

  • England, K. (1993). Suburban pink collar ghettos: The spatial entrapment of women? Annals of Association of the American Geographers, 83(2), 225–242.

    Article  Google Scholar 

  • Farrington, J. H. (2007). The new narrative of accessibility: its potential contribution to discourses in (transport) geography. Journal of Transport Geography, 15(5), 319–330.

    Article  Google Scholar 

  • Fisher, P. (1999). Models of uncertainty in spatial data. In P. Longley, M. F. Goodchild, D. J. Maquire, & D. W. Rhind (Eds.), Geographical information systems (Vol. 2). New York: Wiley.

    Google Scholar 

  • Fotheringham, S., & O’Kelly, M. E. (1989). Spatial interaction models: Formulations and applications. New York: Kluwer Academic.

    Google Scholar 

  • Gao, S., Mokhtarian, P. L., & Johnston, R. A. (2008). Exploring the connections among job accessibility, employment, income, and auto ownership using structural equation modeling. Annals of Regional Science, 42(2), 341–356.

    Article  Google Scholar 

  • Garreau, J. (1991). Edge city. New York: Doubleday.

    Google Scholar 

  • Goodchild, M. (2006). GIS and disasters: Planning for catastrophe. Computers, Environment and Urban Systems, 30(3), 227–229.

    Article  Google Scholar 

  • Hamilton, B. W. (1982). Wasteful commuting. The Journal of Political Economy, 90(5), 1035–1053.

    Article  Google Scholar 

  • Hansen, W. G. (1959). How accessibility shapes land use. Journal of the American Institute of Planners, 25(2), 73–76.

    Article  Google Scholar 

  • Hanson, S., & Pratt, G. (1991). Job search and the occupational segregation of women. Annals of the Association of American Geographers, 81(2), 229–253.

    Article  Google Scholar 

  • Heikkila, E. J. (2000). The fuzzy logic of accessibility. In D. G. Janelle & D. C. Hodge (Eds.), Information, place, and cyberspace: Issues in accessibility (91–106). Berlin: Springer.

    Google Scholar 

  • Horner, M. W. (2004). Spatial dimension of urban commuting: A review of major issues and their implications for future geographic research. The Professional Geographer, 56(2), 160–173.

    Google Scholar 

  • Kasarda, J. D. (1989). Urban industrial transition and the underclass. Annals of the American Academy, AAPSS 501 (January).

  • Kwan, M. P., & Weber, J. (2003). Individual accessibility revisited: Implications for geographical analysis in the twenty-five century. Geographical Analysis, 35(4), 133–149.

    Article  Google Scholar 

  • Ladner, R., Petry, F. E., & Cobb, M. A. (2003). Fuzzy set approaches to spatial data mining of association rules. Transactions in GIS, 7(1), 123–138.

    Article  Google Scholar 

  • Lau, J., & Chiu, C. (2004). Accessibility of workers in a compact city: The case of Hong Kong. Habitat International, 28(1), 89–102.

    Article  Google Scholar 

  • Li, X., & Yeh, A. G. O. (2004). Analyzing spatial restructuring of land use patterns in a fast growing region using remote sensing and GIS. Landscape and Urban Planning, 69(4), 335–354.

    Article  Google Scholar 

  • Lucy, W. H., & Phillips, D. L. (1997). The post-suburban era comes to Richmond: City decline, suburban transition, and exurban growth. Landscape and Urban Planning, 36(4), 259–275.

    Article  Google Scholar 

  • McGrew, J. C., & Monroe, C. B. (2000). An introduction to statistical problem solving in geography. Boston: McGraw-Hill.

    Google Scholar 

  • Mieszkowski, P., & Mills, E. S. (1993). The causes of Metropolitan suburbanization. Journal of Economic Perspectives, 7(3), 135–147.

    Article  Google Scholar 

  • Mills, E. S., & Tan, J. P. (1980). A comparison of urban population density functions in developed and developing countries. Urban Studies, 17(3), 313–321.

    Article  Google Scholar 

  • Oh, K., & Jeong, Y. (2002). The usefulness of the GIS-fuzzy set approach in evaluating the urban residential environment. Environment and Planning B, 29(4), 589–606.

    Article  Google Scholar 

  • Parolin, B., & S. Kamara, S. (2003). Changes in accessibility to employment in metropolitan Sydney 1981–1996. In Proceedings of the 2003 conference on computers in urban planning and modelling. Sendai, Japan.

  • Peng, Z. R. (1997). The jobs-housing balance and urban commuting. Urban Studies, 34(8), 1215–1235.

    Article  Google Scholar 

  • Pieczyński, A., & Robak, S. (2008). Assessing the non-technical service aspects by using fuzzy methods. In L. Rutkowski, et al. (Eds.), Lecture notes in artificial intelligence. Berlin: Springer.

    Google Scholar 

  • Shannon, C. E., & Weaver, W. (1962). The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  • Singh, V. P. (1999). The entropy theory as a tool for modelling and decision-making in environmental and water resources. Water SA, 26(1), 1–11.

    Google Scholar 

  • Soysal, Y. (1994). Limits of citizenship. Chicago: University of Chicago Press.

    Google Scholar 

  • Thériault, M., Des Rosiers, F., & Joerin, F. (2004). Modelling accessibility to urban services using fuzzy logic: A comparative analysis of two methods. Journal of Property Investment and Finance, 23(1), 22–54.

    Article  Google Scholar 

  • Urry, J. (2000). Sociology beyond societies. London: Routledge.

    Google Scholar 

  • U.S. Census Bureau. (2003). Occupations: 2000. U.S. Department of Commerce.

  • Wang, F. (2001). Explaining intraurban variations of commuting by job proximity and workers’ characteristics. Environment and Planning B, 28(2), 169–182.

    Article  Google Scholar 

  • Wang, F. (2003). Job proximity and accessibility for workers of various wage groups. Urban Geography, 24(3), 253–271.

    Article  Google Scholar 

  • White, M. J. (1988). Urban commuting journeys are not ‘wasteful’. The Journal of Political Economy, 96(5), 1097–1110.

    Article  Google Scholar 

  • Wilson, M. (2001). Interclass fuzzy rule generation for road scene recognition from colour images. In W. Skarbek (Ed.), LNCS 2124: 692–699, CAIP 2001. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjoo Kim.

Appendices

Appendix 1: Crossover profiles for 18 groups illustrated with their fuzzy set MFs

Appendix 2: Uncertainty among the fuzzy sets by gender based on universal index

Appendix 3: Disaggregate doubly constrained spatial interaction model

$$T_{ij}^{kg} = A_{i}^{kg} O_{i}^{kg} B_{j}^{kg} D_{j}^{kg} \exp ( - \beta^{kg} c_{ij} )$$
(12)
$$A_{i}^{kg} = \frac{1}{{\sum\nolimits_{j} {B_{j}^{kg} D_{j}^{kg} \exp ( - \beta^{kg} c_{ij} )} }}$$
(13)
$$B_{j}^{kg} = \frac{1}{{\sum\nolimits_{i} {A_{i}^{kg} } O_{i}^{kg} \exp ( - \beta^{kg} c_{ij} )}}$$
(14)
$$\sum\limits_{j}^{{}} {T_{ij}^{kg} } = O_{i}^{kg} \quad \forall i$$
(15)
$$\sum\limits_{i}^{{}} {T_{ij}^{kg} } = D_{j}^{kg} \quad \forall j$$
(16)

where kg occupation (k) and gender (g) combination which ensures (\(\sum\nolimits_{kg} {T_{ij}^{kg} } = T_{ij}\)) for all i and j.

$$ACC_{j}^{kg} = (B_{j}^{kg} )^{ - 1} = \left[ {\sum\limits_{i} {A_{i}^{kg} O_{i}^{kg} \exp ( - \beta^{kg} c_{ij} )} } \right]$$
(17)

Spatial interactions by worker’ occupation and gender can be modeled by the Eq. (12). Equations (13) and (14) ensure (15) and (16), respectively. Notice that the O kg i (15) and D kg j (16) ensure the row sum and column sum in the SI model job accessibility (ACC kg j ). The Eq. (17) representing job accessibility at destinations is disaggregated by worker’ occupation and gender using a doubly constrained spatial interaction model. Values for O kg i and D kg j for each gender (g) and occupational category (k) are obtained from the CTPP Part 1 (P1) and Part 2 (P2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C., Sang, S. & Ban, H. Exploring job centers by accessibility using fuzzy set approach: the case study of the Columbus MSA. GeoJournal 79, 209–222 (2014). https://doi.org/10.1007/s10708-013-9501-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-013-9501-2

Keywords

Navigation