Skip to main content
Log in

Identification and Simultaneous Optimisation of Tunisian Clay Properties: Preliminary Study for the Ceramic Products

  • Original paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

The relationship between composition and physical parameters such as specific surface area, cationic exchange capacity and plasticity is studied with the aim of developing regression models that would permit the prediction of clay properties. These models could be useful for mineralogists and industrial applications. Nineteen representative clay samples were collected from Jebel Ressas in north-eastern Tunisia. Mineralogical data show that clay samples cover a very large variety of minerals. The main clay mineral is illite (50–60 wt%), secondary minerals including quartz, calcite and minor amounts of Na-feldspar. This study reveals that the average amount of silica (SiO2) and alumina (Al2O3) are 51.9 and 19.6 wt%, respectively. The contents of lime (CaO) and iron (Fe2O3) vary between 4 and 8 wt% whereas the amount of alkalis (Na2O + K2O) is on average 4.1 wt%. The grain size data indicates a significant amount of silt fraction, and the fraction <2 µm varies between 23 and 35 wt%. Values for plasticity index range from 16 to 28 wt%. The cation exchange capacity and the specific surface values are 34.1–45.7 meq/100 g of air-dried clay and 302–374 m2/g, respectively. Lastly, regression models are used to correlate the properties with the mineralogical and chemical compositions. The significance and the validity of models were confirmed by statistical analysis and verification experiments. The regression models can be used to select the clay properties (plasticity index, cation exchange capacity and specific surface) in relation with clay minerals proportions and the finer fraction amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ancey C (2007) Plasticity and geophysical flows: a review. J Non-Newton Fluid Mech 142(1–3):4–35

    Article  Google Scholar 

  • Bell FG, Coulthard JM (1997) A survey of some geotechnical properties of the Tees Laminate Clay of central Middlesbrough, North East England. Eng Geol 48:117–133

    Article  Google Scholar 

  • Ben M’Barek M, Srasra E, Zargouni F (2002) Caractérisation des argilites de Paléocène Nord Ouest de la Tunisie et leur utilisation dans le domaine de la céramique. Afr Geosci Rev 9(2):107–117

    Google Scholar 

  • Besq A, Malfoy C, Pantet A, Monnet P, Righi D (2003) Physicochemical characterisation and flow properties of some bentonite muds. Appl Clay Sci 23:275–286

    Article  Google Scholar 

  • Carretero MI, Dondi M, Fabbri B, Raimondo M (2002) The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic–chloritic clays. Appl Clay Sci 20:301–306

    Article  Google Scholar 

  • Casagrande A (1948) Plasticity chart for the classification of cohesive soils. Trans Am Soc Civ Eng 113:901

    Google Scholar 

  • Cornell JA (2002) Experiments with mixtures: designs, models and the analysis of mixtures data, 3rd edn. Wiley, New York

    Book  Google Scholar 

  • Correia SL, Hotza D, Segadães SA (2004) Simultaneous optimization of linear firing shrinkage and water absorption of triaxial ceramic bodies using experiments design. Ceram Int 30:917–922

    Article  Google Scholar 

  • Diko ML, Ekosse GE, Ayonghe SN, Ntasin EB (2011) Physical characterization of clayey materials from tertiary volcanic cones in Limbe (Cameroon) for ceramic applications. Appl Clay Sci 51:380–384

    Article  Google Scholar 

  • El Hechi A (2004) Etude minéralogique et physico-chimique des séries argileuses du Crétacé-supérieur—Paléogène de la région de Grombalia, Zaghouan, et Enfidha. Thèse Doctorat. Faculté des Sciences de Tunis

  • Elkhazri A, Razgah S, Abdallah H, Ben Haj Ali N (2009) L’événement anoxique «OAE 1a» Barrémo-Aptien en Tunisie nordorientale: intérêt des foraminifères. Rev Paléobiol 28(1):93–130

    Google Scholar 

  • Ferrari S, Gualtieri AF (2006) The use of illitic clays in the production of stoneware tile ceramics. Appl Clay Sci 32:73–81

    Article  Google Scholar 

  • Garzón E, Sánchez-Soto PJ, Romero E (2010) Physical and geotechnical properties of clay phyllites. Appl Clay Sci 48:307–318

    Article  Google Scholar 

  • Grim RE (1962) Applied clay mineral science. McGraw-Hill, New York

  • Holtz K, Kovacs WD (1981) Kansas geotechnical survey, current research in Earth Science. Bulletin 244, part 3, The Relationship between Geology and Landslide Hazards of Atchison, Kansas and Vicinity

  • Klaarenbeek FW (1961) The development of yellow colours in calcareous bricks. Trans Br Ceram Soc 60:739–771

    Google Scholar 

  • Kreimeyer R (1987) Some notes on the firing colour of clay bricks. Appl Clay Sci 2:175–183

    Article  Google Scholar 

  • Lisboa JV, Carvalho JMF, Oliveira A, Carvalho C, Grade J (2007) A preliminary case study of potential ceramic raw materials in the Aileu area of Timor Leste. J Asian Earth Sci 29:593–603

    Article  Google Scholar 

  • Mahmoudi S, Srasra E, Zargouni F (2008) The use of Tunisian Barremian clay in the traditional ceramic industry: optimization of ceramic properties. Appl Clay Sci 42:125–129

    Article  Google Scholar 

  • Mahmoudi S, Srasra E, Zargouni F (2010) Firing behaviour of the lower cretaceous clays of Tunisia. J Afr Earth Sci 58:235–241

    Article  Google Scholar 

  • Meier LP, Nüesch R (1999) The lower cation exchange capacity limit of montmorillonite. J Colloid Interface Sci 217:77–85

    Article  Google Scholar 

  • Modesto C, Bernardin AM (2008) Determination of clay plasticity: indentation method versus Pfefferkorn method. Appl Clay Sci 40:15–19

    Article  Google Scholar 

  • Moussa L, Srasra E, Bouzouita K (1992) Stabilisation of clay suspension used in Tunisian ceramics. Mineral Petrogr Acta XXXV-A:147–159

    Google Scholar 

  • Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimisation using designed experiments. Wiley, New York

    Google Scholar 

  • Proust C, Jullien A, Forestier L (2004) Détermination indirecte des limites d’Atterberg par gravimétrie dynamique. C R Geosci 335:175–183

    Google Scholar 

  • Schmitz RM, Schroeder C, Charlier R (2004) Chemo-mechanical interactions in clay: a correlation between clay mineralogy and Atterberg limits. Appl Clay Sci 40:351–358

    Article  Google Scholar 

  • Sedmale G, Sperberga I, Sedmalis U, Valancius Z (2006) Formation of high-temperature crystalline phases in ceramic from illite clay and dolomite. J Eur Ceram Soc 26:3351–3355

    Article  Google Scholar 

  • Srasra E, Bergaya F, Van Damme H, Ariguib NK (1989) Surface properties of an activated bentonite—decolorisation of rape-seed oils. Appl Clay Sci 4:411–421

    Article  Google Scholar 

  • Środoń J (1981) X-ray identification of randomly interstratified illite/smectite in mixtures with discrete illite. Clay Miner 16:297–304

    Article  Google Scholar 

  • Strazzera B, Dondi M, Marsigli M (1997) Composition and ceramic properties of Tertiary clays from southern Sardinia (Italy). Appl Clay Sci 20:247–266

    Article  Google Scholar 

  • Turki MM (1988) Polycinématique et contrôle sédimentaire associé sur la cicatrice de Zaghouan–Nabhana. Revue des Sciences de la Terre. Édition de l’Institut National de Recherche Scientifique et Technique de Tunis, Tunisie, p 262

  • Van der Merwe DH (1964) Prediction of heave from the plasticity index and percentage of clay fraction of soils. Trans S Afr Inst Civ Eng 6:103–107

    Google Scholar 

  • Wattanasiriwech D, Srijan K, Wattanasiriwech S (2009) Vitrification of illitic clay from Malaysia. Appl Clay Sci 43:57–62

    Article  Google Scholar 

  • Yu HS, Khong C, Wang J (2007) A unified plasticity model for cyclic behaviour of clay and sand. Mech Res Commun 34(2):97–114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Mahmoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, S., Srasra, E. & Zargouni, F. Identification and Simultaneous Optimisation of Tunisian Clay Properties: Preliminary Study for the Ceramic Products. Geotech Geol Eng 34, 817–825 (2016). https://doi.org/10.1007/s10706-016-0005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-016-0005-y

Keywords

Navigation