Skip to main content

Advertisement

Log in

Soil N2O fluxes in integrated production systems, continuous pasture and Cerrado

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate N2O fluxes from integrated crop-livestock (ICL) and integrated crop-livestock forest (ICLF) systems, continuous pasture and native Cerrado. The experiment was conducted at Embrapa Cerrados, Planaltina-DF, in a Red Oxisol, between February 2012 and April 2014, following the transition of crop to livestock, which began in March 2012, with the sowing of Brachiaria brizantha cv. Piatã, intercropped with sorghum. The experimental design was a randomized block with three replications. The treatments were: cultivated area intercropped with rows of Eucalyptus, spaced 2 × 2 m between plants and 22 m between rows (ICLF); and an area cultivated without tree species (ICL), and also two adjacent reference areas: native Cerrado and continuous pasture. N2O productions were characterized by fluxes below 20 μg N m−2 h−1. The ICL system had the highest cumulative flux with 2.84 kg N ha−1, while the ICLF system obtained cumulative fluxes of 2.05 kg N ha−1. The native Cerrado showed a negative balance, with –0.05 kg N ha−1. The dry season was mostly characterized by low N2O fluxes ranging between 10 μg N m−2 h−1 and negative values, whereas higher N2O fluxes were observed after precipitation events, especially those following a long drought period. The water filled pore space was the factor that best explained N2O fluxes, but higher fluxes were observed after the application of nitrogen fertilizer. There was a positive correlation between microbial biomass carbon and N2O fluxes in the ICL and ICLF systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic Press, London

    Google Scholar 

  • Allen DE, Mendham DS, Bhupinderpal-Singh Cowie A, Wang W, Dalal RC, Raison RJ (2009) Nitrous oxide and methane emissions from soil are reduced following afforestation of pasture lands in three contrasting climatic zones. Aust J Soil Res 47:443–445. doi:10.1071/SR08151

    Article  CAS  Google Scholar 

  • Alves BJ, Smith KA, Flores RA, Cardoso AS, Oliveira WRD, Jantalia CP, Boddey RM (2012) Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils. Soil Biol Biochem 46:129–135. doi:10.1016/j.soilbio.2011.11.022

    Article  CAS  Google Scholar 

  • Baggs EM, Philippot L (2010) Microbial terrestrial pathways to nitrous oxide. In: Smith K (ed) Nitrous oxide and climate change. Earthscan, London, pp 4–36

    Google Scholar 

  • Birch HF (1964) Mineralisation of plant nitrogen following alternate wet and dry conditions. Plant Soil 20:43–49

    Article  Google Scholar 

  • Brasil (2015) Federative Republic of Brazil—Intended Nationally Determined Contribution Towards Achieving the Objective of the United Nations Framework Convention on Climate Change. Brasilia Ministry of Foreign Affairs. http://www.itamaraty.gov.br/images/ed_desenvsust/BRAZIL-iNDC-english.pdf. Accessed 26 August 2016

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Bustamante MMC, Nobre CA, Smeraldi R, Aguiar APD, Barioni LG, Ferreira LG, Longo K, May P, Pinto AS, Ometto JPHB (2012) Estimating greenhouse gas emissions from cattle raising in Brazil. Clim Change 115:559–577. doi:10.1007/s10584-012-0443-3

    Article  CAS  Google Scholar 

  • Cameron KC, Di HJ, Moir JL (2013) Nitrogen losses from the soil/plant system: a review. Ann Appl Biol 162:145–173. doi:10.1111/aab.12014

    Article  CAS  Google Scholar 

  • Cardoso AS, Berndt A, Leytem A, Alves BJR, Carvalho INO, Soares LHB, Urquiaga S, Boddey RM (2016) Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use. Agric Syst 143:86–96. doi:10.1016/j.agsy.2015.12.007

    Article  Google Scholar 

  • Carvalho AM, Bustamante MMC, Kozovits AR, Miranda LN, Vivaldi LJ, Sousa DM (2006) Emissão de óxidos de nitrogênio associada à aplicação de uréia sob plantio convencional e direto. Pesqui Agropecu Bras 41(4):679–685. doi:10.1590/S0100-204X2006000400020

    Article  Google Scholar 

  • Carvalho JLN, Raucci GS, Frazao LA, Cerri CEP, Bernoux M, Cerri CC (2014) Crop-pasture rotation: a strategy to reduce soil greenhouse gas emissions in the Brazilian Cerrado. Agric Ecosyst Environ 183:167–175. doi:10.1016/j.agee.2013.11.014

    Article  CAS  Google Scholar 

  • Chapuis-Lardy L, Wrage N, Metay A, Chotte J-C, Bernoux M (2007) Soil a sink for N2O? A review. Glob Change Biol 13:1–17. doi:10.1111/j.1365-2486.2006.01280.x

    Article  Google Scholar 

  • Chen F, Zheng K, Ouyang Z, Li H, Wu B, Shi Q (2013) Soil microbial community structure and function responses to successive planting of Eucalyptus. J Environ Sci 25(10):2102–2111. doi:10.1016/S1001-0742(12)60319-2

    Article  CAS  Google Scholar 

  • Cianciaruso MV, Pires JSR, Delitti WBC, Silva EFLP (2006) Produção de serapilheira e decomposição do material foliar em um cerradão na Estação Ecológica de Jataí, município de Luiz Antônio, SP, Brasil. Acta Bot Bras 20:49–59. doi:10.1590/S0102-33062006000100006

    Article  Google Scholar 

  • Conen F, Smith KA (2000) An explanation of linear increases in gas concentration under closed chambers used to measure gas exchange between soil and the atmosphere. Eur J Soil Sci 51:111–117. doi:10.1046/j.1365-2389.2000.00292.x

    Article  CAS  Google Scholar 

  • Cordeiro LAM, Vilela L, Marchao RL, Klutujcouski J, Martha Junior GB (2015) Integração lavoura-pecuária e integração lavoura-pecuária-floresta: estratégias para intensificação sustentável do uso do solo. Cad Ciência Tecnologia 32:15–43

    Google Scholar 

  • Cruvinel EBF, Bustamante MMC, Kozovits AR, Zepp RG (2011) Soil emissions of NO, N2O and CO2 from croplands in the savanna region of central Brazil. Agric Ecosyst Environ 144:29–40. doi:10.1016/j.agee.2011.07.016

    Article  Google Scholar 

  • Cuhel J, Simek M, Laughlin RJ, Bru D, Cheneby D, Watson CJ, Philippot L (2010) Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Appl Environ Microbiol 76(6):1870–1878. doi:10.1128/AEM.02484-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson EA, Kelles M, Erickson HE, Verchot LV, Veldkamp E (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50(8):667–680

    Article  Google Scholar 

  • Denmead OT, MacDonald BCT, Bryant G, Naylor T, Wilson S, Griffith DWT, Wang WJ, Salter B, White I, Moody PW (2010) Emissions of methane and nitrous oxide from Australian sugarcane soils. Agric For Meteorol 150(6):748–756. doi:10.1016/j.agrformet.2009.06.018

    Article  Google Scholar 

  • Dick J, Skiba U, Wilson J (2001) The effect of rainfall on NO and N2O emissions from Ugandan agroforest soils. Phyton-Ann Rei Bot A 41:73–80

    CAS  Google Scholar 

  • Dijkstra FA, Morgan JA, Follett RF, Lecain DR (2013) Climate change reduces the net sink of CH4 and N2O in a semiarid grassland. Glob Change Biol 19(6):1816–1826. doi:10.1111/gcb.12182

    Article  Google Scholar 

  • Dobbie KE, McTaggart IP, Smith KA (1999) Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors. J Geophys Res 104(D21):26891–26899. doi:10.1029/1999JD900378

    Article  CAS  Google Scholar 

  • Eickenscheidt N, Brumme R (2013) Regulation of N2O and NOx emission patterns in six acid temperate beech forest soils by soil gas diffusivity, N turnover, and atmospheric NOx concentrations. Plant Soil 369:515–529. doi:10.1007/s11104-013-1602-7

    Article  CAS  Google Scholar 

  • Embrapa (1997) Manual de métodos de análise de solos. Rio de Janeiro

  • Embrapa (2014) Sistema brasileiro de classificação de solos. Brasília, Distrito Federal

  • Franchini JC, Balbinot Junior AA, Sichieri FR, Debiasi H, Conte O (2014) Yield of soybean, pasture and wood in integrated crop-livestock-forest system in Northwestern Parana state, Brazil. Rev Cienc Agron 46(5):1006–1013. doi:10.1590/S1806-66902014000500016

    Article  Google Scholar 

  • Fuß R, Ruth B, Schilling R, Scherb H, Munch JC (2011) Pulse emissions of N2O and CO2 from an arable field depending on fertilization and tillage practice. Agric Ecosyst Environ 144:61–68. doi:10.1016/j.agee.2011.07.020

    Article  Google Scholar 

  • Goldberg SD, Gebauer G (2009) Drought turns a Central European Norway spruce forest soil from an N2O source to a transient N2O sink. Glob Change Biol 15(4):850–860. doi:10.1111/j.1365-2486.2008.01752.x

    Article  Google Scholar 

  • Gomes J, Bayer C, Costa FS, Piccolo MC, Zanatta JA, Vieira FCB, Six J (2009) Soil nitrous oxide emissions in long-term cover crops-based rotations under subtropical climate. Soil Tillage Res 106:36–44. doi:10.1016/j.still.2009.10.001

    Article  Google Scholar 

  • Grover SPP, Livesley SJ, Hutley LB, Jamali H, Fest B, Beringer J, Butterbach-Bahl K, Arndt SK (2012) Land use change and the impact on greenhouse gas exchange in north Australian savanna soils. Biogeosciences 9:423–437. doi:10.5194/bg-9-423-2012

    Article  CAS  Google Scholar 

  • Hickman JE, Palm CA, Mutuo P, Melillo JM, Tang J (2014) Nitrous oxide (N2O) emissions in response to increasing fertilizer addition in maize (Zea mays L.) agriculture in western Kenya. Nutr Cycl Agroecosyst 100(2):177–187. doi:10.1007/s10705-014-9636-7

    Article  CAS  Google Scholar 

  • Holtgrieve GW, Jewett PK, Matson PA (2006) Variations in soil N cycling and trace gas emissions in wet tropical forests. Oecologia 146:584–594. doi:10.1007/s00442-005-0222-1

    Article  PubMed  Google Scholar 

  • IPCC (2000) Intergovernmental Panel on Climate Change. Land use, land use change and forestry. A special report for IPCC. Cambridge University Press, UK

  • Jantalia CP, Santos HP, Urquiaga S, Boddey RM, Alves BJR (2008) Fluxes of nitrous oxide from soil under different crop rotations and tillage systems in the South of Brazil. Nutr Cycl Agroecosyst 82:161–173. doi:10.1007/s10705-008-9178-y

    Article  CAS  Google Scholar 

  • Jarvis P, Rey A, Petsikos C, Wingate L, Rayment M, Pereira J, Banza J, David J, Miglietta F, Borghetti M, Manca G, Valentini R (2007) Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect”. Tree Physiol 27:929–940. doi:10.1093/treephys/27.7.929

    Article  CAS  PubMed  Google Scholar 

  • Lessa ACR, Madari BE, Paredes DS, Boddey RM, Urquiaga S, Jantalia CP, Alves BJR (2014) Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emissions. Agric Ecosyst Environ 190:104–111. doi:10.1016/j.agee.2014.01.010

    Article  CAS  Google Scholar 

  • Liu XJ, Mosier AR, Halvorson AD, Reule CA, Zhang FS (2007) Dinitrogen and N2O emissions in arable soils: effect of tillage, N source and soil moisture. Soil Biol Biochem 39:2362–2370. doi:10.1016/j.soilbio.2007.04.008

    Article  CAS  Google Scholar 

  • Livingston GP, Hutchinson GL (1995) Enclosure-based measurement of trace gas exchange: applications and sources of error. Biogenic trace gases: measuring emissions from soil and water. Blackwell, Oxford, pp 14–51

    Google Scholar 

  • Lopes AS, Cox FR (1977) A survey of the fertility status of surface soils under cerrado vegetation in Brazil. Soil Sci Soc Am J 41:742–747. doi:10.2136/sssaj1977.03615995004100040026x

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry systems. A review. Agron Sustain Dev 34(2):443–454. doi:10.1007/s13593-014-0212-y

    Article  CAS  Google Scholar 

  • Mandarino RA, Pereira LGR, Barbosa FA, Vilela L, Maciel GA, Guimaraes Junior R (2015) Methane emissions of Nellore heifers on integrated crop-livestock-forest systems in the Brazilian Cerrado. In: World congress on integrated-crop-livestock-forest systems, 3rd international symposium on integrated crop-livestock systems towards sustainable intensification. Embrapa, Brasília, Brazil

  • Martins MR, Jantalia CP, Polidoro JC, Batista JN, Alves BJR, Boddey RM, Urquiaga S (2015) Nitrous oxide and ammonia emissions from N fertilization of maize crop under no-till in a Cerrado soil. Soil Tillage Res 151:75–81. doi:10.1016/j.still.2015.03.004

    Article  Google Scholar 

  • MCTI (2014). Estimativas anuais de emissões de gases de efeito estufa no Brasil. Segunda Edição. Ministério da Ciência, Tecnologia e Inovação, Brasília, Brazil. http://www.mct.gov.br/upd_blob/0235/235580.pdf. Accessed 20 March 2016

  • Metay A, Oliver R, Scopel E, Douzet JM, Moreira JAA, Maraux F, Feigl BJ, Feller C (2007) N2O and CH4 emissions from soils under conventional and no-till management practices in Goiânia (Cerrados, Brazil). Geoderma 141:78–88. doi:10.1016/j.geoderma.2007.05.010

    Article  CAS  Google Scholar 

  • Metay A, Chapuis-Lardy L, Findeling A, Oliverd R, Alves JA, Moreira C (2011) Simulating N2O fluxes from a Brazilian cropped soil with contrasted tillage practices. Agric Ecosyst Environ 140:255–263. doi:10.1016/j.agee.2010.12.012

    Article  CAS  Google Scholar 

  • Mosier AR, Kroeze C, Nevison C, Oenema O, Seitzinger SP, Van Cleemput O (1998) Closing the global N2O budget: nitrous oxide emission through the agricultural nitrogen cycle. OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology. Nutr Cycl Agroecosyst 52:225–248. doi:10.1023/A:1009740530221

    Article  CAS  Google Scholar 

  • Mosier A, Wassmann R, Verchot L, King J, Palm C (2004) Methane and nitrogen oxide fluxes in tropical agricultural soils: sources, sinks and mechanisms. Environ Dev Sustain 6(1):11–49. doi:10.2134/jeq2005.0232

    Article  Google Scholar 

  • Mosier AR, Halvorson AD, Reule CA, Liu XJ (2006) Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. J Environ Qual 35:1584–1598. doi:10.2134/jeq2005.0232

    Article  CAS  PubMed  Google Scholar 

  • Nardoto GB, Bustamante MMC (2003) Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesqui Agropecu Bras 38:955–962. doi:10.1590/S0100-204X2003000800008

    Article  Google Scholar 

  • Niklaus PA, Wardle DA, Tate KR (2006) Effects of plant species diversity and composition on nitrogen cycling and the trace gas balance of soils. Plant Soil 282:83–98. doi:10.1007/s11104-005-5230-8

    Article  CAS  Google Scholar 

  • Novoa R, Tejeda HR (2006) Evaluation of the N2O emissions from N in plant residues as affected by environmental and management factors. Nutr Cycl Agroecosyst 75:29–46. doi:10.1007/s10705-006-9009-y

    Article  CAS  Google Scholar 

  • Parkin TB, Kaspar TC (2006) Nitrous oxide emissions from corn-soybean systems in the Midwest. J Environ Qual 35:1496–1506. doi:10.2134/jeq2005.0183

    Article  CAS  PubMed  Google Scholar 

  • Pelster DE, Larouche F, Rochette P, Chantigny MH, Allaire S, Angers DA (2011) Nitrogen fertilization but not soil tillage affects nitrous oxide emissions from a clay loam soil under a maize–soybean rotation. Soil Tillage Res 115–116:16–26. doi:10.1016/j.still.2011.06.001

    Article  Google Scholar 

  • Peres JRR, Suhet AR, Vargas MAT, Drozdowicz A (1983) Litter production in areas of Brazilian ‘Cerrados’. Pesq Agropecu Bras 18:1037–1043

    Google Scholar 

  • Pimentel LG, Weiler DA, Pedroso GM, Bayer C (2015) Soil N2O emissions following cover-crop residues application under two soil moisture conditions. J Plant Nutr Soil Sci 178(4):631–640. doi:10.1002/jpln.201400392

    Article  CAS  Google Scholar 

  • Ribeiro JF, Walter BMT (1998) Fitofisionomias do bioma Cerrado. In: Sano SM, Almeida SP (eds) Cerrado: ambiente e flora. Embrapa Cerrados, Planaltina, pp 89–166

    Google Scholar 

  • Rosenkranz P, Bruggemann N, Papen H, Xu Z, Seufert G, Butterbach-Bahl K (2006) N2O, NO and CH4 exchange, and microbial N turnover over a Mediterranean pine forest soil. Biogeosciences 3:121–133. doi:10.5194/bg-3-121-2006

    Article  CAS  Google Scholar 

  • Ruser R, Flessa H, Russow R, Schmidt G, Buegger F, Munch JC (2006) Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biol Biochem 38:263–274. doi:10.1016/j.soilbio.2005.05.005

    Article  CAS  Google Scholar 

  • Salton JC, Mercante FM, Tomazi M, Zanatta JA, Concenço G, Silva WM, Retore M (2014) Integrated crop-livestock system in tropical Brazil: toward a sustainable production system. Agric Ecosyst Environ 190:70–79. doi:10.1016/j.agee.2013.09.023

    Article  Google Scholar 

  • Santos DC, Guimarães Júnior R, Vilela L, Pulrolnik K, Bufon VB, França AFS (2016) Forage dry mass accumulation and structural characteristics of Piatã grass in silvopastoral systems in the Brazilian savannah. Agric Ecosyst Environ 233(3):16–24. doi:10.1016/j.agee.2016.08.026

    Article  Google Scholar 

  • Signor D, Cerri CEP (2013) Nitrous oxide emissions in agricultural soils: a review. Pesqui Agropecu Trop 43(3):322–338. doi:10.1590/S1983-40632013000300014

    Article  Google Scholar 

  • Signor D, Cerri CEP, Conant R (2013) N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environ Res Lett 8(1):1–9. doi:10.1088/1748-9326/8/1/015013

    Article  Google Scholar 

  • Silva FAM, Evangelista BA, Malaquias JV (2014) Normal Climatológica de 1974 a 2003 da Estação Principal da Embrapa Cerrados. Embrapa Cerrados, Planaltina

    Google Scholar 

  • Smith K, Crutzen P, Mosier A, Winiwarter W (2010) The global nitrous oxide budget: a reassessment. In: Smith K (ed) Nitrous oxide and climate change. Earthscan, London, pp 63–84

    Google Scholar 

  • Soumare A, Manga A, Fall S, Hafidi M, Ndoye I, Duponnois R (2015) Effect of eucalyptus camaldulensis amendment on soil chemical properties, enzymatic activity, Acacia species growth and roots symbioses. Agrofor Syst 89:97–106. doi:10.1007/s10457-014-9744-z

    Article  Google Scholar 

  • Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74:207–228. doi:10.1007/s10705-006-9000-7

    Article  CAS  Google Scholar 

  • Stewart KJ, Brummell ME, Farrell RE, Siciliano SD (2012) N2O flux from plant-soil systems in polar deserts switch between sources and sinks under different light conditions. Soil Biol Biochem 48:69–77. doi:10.1016/j.soilbio.2012.01.016

    Article  CAS  Google Scholar 

  • Stieven AC, Oliveira DA, Santos JO, Wruck FJ, Campos DTS (2014) Impacts of integrated crop-livestock-forest on microbiological indicators of soil. Rev Bras Cienc Agrar 9(1):53–58. doi:10.5039/agraria.v9i1a3525

    Google Scholar 

  • Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7(1):75–83

    Article  Google Scholar 

  • Ussiri DAN, Lal R (2013) Soil emission of nitrous oxide and its mitigation. Springer, Dordrecht

    Book  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707. doi:10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Verchot LV, Junior SB, de Oliveira C, Mutegi JK, Cattanio H, Davidson EA (2008) Fluxes of CH4, CO2, NO and N2O in an improved fallow agroforestry system in eastern Amazonia. Agric Ecosyst Environ 126:113–121. doi:10.1016/j.agee.2008.01.012

    Article  CAS  Google Scholar 

  • Wardle DA (1994) Metodologia para a quantificação da biomassa microbiana do solo. In: Hungria M, Araújo RS (eds) Manual de métodos empregados em estudos de microbiologia agrícola. Embrapa, Brasília

    Google Scholar 

  • WMO—World Meteorological Organization (2012) Greenhouse Gas Bulletin http://www.wmo.int/pages/prog/arep/gaw/ghg/documents/GHG_Bulletin_No.8_en.pdf. Acessed 16 November 2014

  • Zhang J, Han X (2008) N2O emission from the semiarid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China. Atmos Environ 42(2):291–302. doi:10.1016/j.atmosenv.2007.09.036

    Article  CAS  Google Scholar 

Download references

Acknowledgements

To Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), for the scientific productitvity fellowships granted to the first and the third author. Also, to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for the Post-Doctorate fellowship granted to the fourth author. Project funding was provided by Empresa Brasileira de Pesquisa Agropecuária, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior and Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thais Rodrigues Coser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, A.M., de Oliveira, W.R.D., Ramos, M.L.G. et al. Soil N2O fluxes in integrated production systems, continuous pasture and Cerrado. Nutr Cycl Agroecosyst 108, 69–83 (2017). https://doi.org/10.1007/s10705-017-9823-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-017-9823-4

Keywords

Navigation