Skip to main content
Log in

Spiral to flat fracture transition for notched rods under torsional loading

  • Brief Note
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The transition of the fracture surface in notched and unnotched PMMA rods under torsional loading is investigated experimentally. The experiments show that for crack initiation from a notch, resulting in dynamic fracture propagation, as the notch depth increases, the surface transitions from a spiral fracture to a nominally flat, but faceted surface. The facets coarsen and merge as the crack grows toward the center of the rod. The resulting fracture surfaces as well as the multiple internal micro-cracks are visualized using micro CT scanning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berto F, Elices M, Lazzarin P, Zappalorto M (2012) Fracture behaviour of notched round bars made of PMMA subjected to torsion at room temperature. Eng Fract Mech 90:143–160

    Article  Google Scholar 

  • Berto F, Cendon DA, Lazzarin P, Elices M (2013) Fracture behaviour of notched round bars made of PMMA subjected to torsion at \(-\)60 \(^{\circ }\)C. Eng Fract Mech 102:271–287

    Article  Google Scholar 

  • Carter BJ, Wawrzynek PA, Ingraffea AR (2000) Automated 3-D crack growth simulation. Int J Numer Methods Eng 47(1–3):229–253

    Article  Google Scholar 

  • Coffman VR, Sethna JP, Heber G, Liu M, Ingraffea A, Bailey NP, Barker EI (2008) A comparison of finite element and atomistic modelling of fracture. Model Simul Mater Sci Eng 16(6):065008

    Article  Google Scholar 

  • Cooke ML, Pollard DD (1996) Fracture propagation paths under mixed mode loading within rectangular blocks of polymethyl methacrylate. J Geophys Res 101:3387–3400

    Article  Google Scholar 

  • David D, Segall P, Delaney PT (1982) Formation and interpretation of dilatant echelon cracks. Geol Soc Am Bull 93(12):1291–1303

    Article  Google Scholar 

  • Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57(2):342–368

    Article  Google Scholar 

  • Hull D (1993) Tilting cracks: the evolution of fracture surface topology in brittle solids. Int J Fract 62(2):119–138

    Article  Google Scholar 

  • Knauss W (1970) An observation of crack propagation in anti-plane shear. Int J Fract 6(2):183–187

    Article  Google Scholar 

  • Lazarus V, Leblond J-B, Mouchrif S-E (2001a) Crack front rotation and segmentation in mixed mode I + III or I + II + III. Part I: calculation of stress intensity factors. J Mech Phys Solids 49(7):1399–1420

  • Lazarus V, Leblond J-B, Mouchrif S-E (2001b) Crack front rotation and segmentation in mixed mode I + III or I + II + III. Part II: comparison with experiments. J Mech Phys Solids 49(7):1421–1443

    Article  Google Scholar 

  • Lazarus V, Buchholz FG, Wiebesiek J, Fulland M (2008) Comparison of predictions by mode II or mode III criteria on crack front twisting in three or four point bending experiments. Int J Fract 153(2):141–151

    Article  Google Scholar 

  • Leblond J-B, Karma A, Lazarus V (2011) Theoretical analysis of crack front instability in mode I + III. J Mech Phys Solids 59(9):1872–1887

    Article  Google Scholar 

  • Lin B, Mear ME, Ravi-Chandar K (2010) Criterion for initiation of cracks under mixed-mode I + III loading. Int J Fract 165(2):175–188

    Article  Google Scholar 

  • Liu S, Chao YJ, Zhu X (2004) Tensile–shear transition in mixed mode I/III fracture. Int J Solids Struct 41(22–23):6147–6172

    Article  Google Scholar 

  • Park K, Paulino GH, Celes W, Espinha R (2012) Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture. Int J Numer Methods Eng 92(1):1–35

    Article  Google Scholar 

  • Pham KH, Ravi-Chandar K (2014) Further examination of the criterion for crack initiation under mixed-mode I + III loading. Int J Fract 189(2):121–138

    Article  Google Scholar 

  • Pons AJ, Karma A (2010) Helical crack-front instability in mixed-mode fracture. Nature 464(7285):85–89

    Article  Google Scholar 

  • Ronsin O, Caroli C, Baumberger T (2014) Crack front echelon instability in mixed mode fracture of a strongly nonlinear elastic solid. Europhys Lett 105(3):34001

    Article  Google Scholar 

  • Sommer E (1969) Formation of fracture lances in glass. Eng Fract Mech 1(3):539–546

    Article  Google Scholar 

  • Suresh S, Tschegg EK (1987) Combined mode I-mode III fracture of fatigue-precracked alumina. J Am Ceram Soc 70(10):726–733

    Article  Google Scholar 

  • Tada H, Paris P, Irwin G (2000) Stress analysis of cracks handbook, 3rd edn. ASME Press, New York

    Book  Google Scholar 

  • Tschegg EK (1983) Mode III and mode I fatigue crack propagation behavior under torsional loading. J Mater Sci 18(6):1604–1614

    Article  Google Scholar 

  • Tschegg EK, Suresh S (1988) Mode III fracture of 4340 steel: effects of tempering temperature and fracture surface interference. Metall Trans A Phys Metall Mater Sci 19(12):3035–3044

    Article  Google Scholar 

  • Youn DH, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2):229–244 03

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Cornell Engineering Learning Initiatives. The use of Cornell University’s Biotechnology Resource Center (BRC) is gratefully acknowledged. The authors would like to thank Larissa-Helen Mahaga-Ajala for the surface reconstruction algorithm used to generate Fig. 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan T. Zehnder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zehnder, A.T., Zella, N.K. Spiral to flat fracture transition for notched rods under torsional loading. Int J Fract 195, 87–92 (2015). https://doi.org/10.1007/s10704-015-0049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0049-7

Keywords

Navigation