Skip to main content
Log in

Regularized boundary integral equations for two-dimensional crack problems in multi-field media

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A systematic procedure is followed to develop a set of regularized boundary integral equations for modeling cracks in 2D linear multi-field media. The class of media treated is quite general and includes, as special cases, anisotropic elasticity, piezoelectricity and magnetoelectroelasticity. Of particular interest is the development of a pair of weakly-singular, weak-form integral equations for ‘generalized displacement’ and ‘generalized stress’; these serve as the basis for a weakly-singular symmetric Galerkin boundary element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Here and in what follows, lower case Greek indices range from 1 to 2, lower case Latin indices range from 1 to 3, and upper case Latin indices range from \(1\) to \(N\). Repeated indices imply summation over their range.

  2. The utilization of both superscripts and subscripts in expressing the components of various quantities is simply a matter of notational convenience.

  3. A summary of certain properties of the Radon transform that are relevant to our procedure are presented in Appendix C.

References

  • Ariza MP, Dominguez J (2004) Boundary element formulation for 3D transversely isotropic cracked bodies. Int J Numer Methods Eng 60:719–753

    Article  Google Scholar 

  • Barnett DM, Lothe J (1975) Dislocation and line charges in anisotropic piezoelectric insulators. Phys Status Solidi B 67:105–111

    Article  Google Scholar 

  • Becache E, Nedelec JC, Nishimura N (1993) Regularization in 3D for anisotropic elastodynamic crack and obstacle problems. J Elast 31:25–46

    Article  Google Scholar 

  • Bonnet M (1995) Regularized direct and indirect symmetric variational BIE formulations for three-dimensional elasticity. Eng Anal Bound Elem 15:93–102

    Article  Google Scholar 

  • Bonnet G (2009) A general regularization of the hypersingular integrals in the symmetric Galerkin boundary element method. Int J Numer Methods Eng 80:1110–1123

    Article  Google Scholar 

  • Bonnet M, Guiggiani M (2003) Direct evaluation of double singular integrals and new free terms in 2D (symmetric) Galerkin BEM. Comput Methods Appl Mech Eng 192:2565–2596

    Article  Google Scholar 

  • Bonnet M, Maier G, Polizzotto C (1998) Symmetric Galerkin boundary element methods. Appl Mech Rev 51:669–703

    Article  Google Scholar 

  • Brebbia CA, Dominguez J (1992) Boundary elements: an introductory course. Computational Mechanics, Southampton

    Google Scholar 

  • Deans SR (1983) The Radon transform and some of its applications. Wiley, New York

    Google Scholar 

  • Frangi A, Novati G (1996) Symmetric BE method in two-dimensional elasticity: evaluation of double integrals for curved elements. Comput Mech 19:58–68

    Article  Google Scholar 

  • Frangi A, Novati G (1998) Regularized symmetric Galerkin BIE formulations in the Laplace transform domain for 2D problems. Comput Mech 22:50–60

    Article  Google Scholar 

  • Frangi A, Novati G, Springhetti R, Rovizzi M (2002) 3D fracture analysis by the symmetric Galerkin BEM. Comput Mech 28:220–232

    Article  Google Scholar 

  • Garcia F, Saez A, Dominguez J (2004) Traction boundary elements for cracks in anisotropic solids. Eng Anal Bound Elem 28:667–676

    Article  Google Scholar 

  • Garcia-Sanchez F, Saez A, Dominguez J (2005) Anisotropic and piezoelectric materials fracture analysis by BEM. Comput Struct 83:804–820

    Article  Google Scholar 

  • Garcia-Sanchez F, Rojas-Diaz R, Saez A, Zhang C (2007) Fracture of magnetoelectroelastic composite materials using boundary element method (BEM). Theor Appl Fract Mech 47:192–204

    Article  CAS  Google Scholar 

  • Ghosh N, Rajiyah H, Ghosh S, Mukherjee S (1986) A new boundary element method formulation for linear elasticity. J Appl Mech 53:69–76

    Article  Google Scholar 

  • Gu H, Yew CH (1988) Finite element solution of a boundary equation for mode-I embedded three-dimensional fracture. Int J Numer Methods Eng 26:1525–1540

    Google Scholar 

  • Li S, Mear ME (1998) Singularity-reduced integral equations for discontinuities in three-dimensional linear elastic media. Int J Fract 93:87–114

    Google Scholar 

  • Nedelec JC (1982) Integral equations with non integrable kernels. Integr Equ Oper Theory 5:562–572

  • Pan E (1999) A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids. Eng Anal Bound Elem 23: 67–76

    Google Scholar 

  • Rungamornrat J, Mear ME (2008a) A weakly-singular SGBEM for analysis of cracks in 3D anisotropic media. Comput Methods Appl Mech Eng 197:4319–4332

    Article  Google Scholar 

  • Rungamornrat J, Mear ME (2008b) Analysis of fractures in 3D piezoelectric media by a weakly singular integral equation method. Int J Fract 151:1–27

    Article  Google Scholar 

  • Rungamornrat J, Mear ME (2008c) Weakly-singular, weak-form integral equations for cracks in three-dimensional anisotropic media. Int J Solids Struct 45:1283–1301

    Article  Google Scholar 

  • Rungamornrat J, Senjuntichai T (2009) Regularized boundary integral representations for dislocations and cracks in smart media. Smart Mater Struct 18. doi:10.1088/0964-1726/18/7/074010

  • Rungamornrat J, Wheeler MF (2006) Weakly-singular integral equations for Darcy’s flow in anisotropic porous media. Eng Anal Bound Elem 30:237–246

    Article  Google Scholar 

  • Salvadori A (2002) Analytical integrations in 2D BEM elasticity. Int J Numer Methods Eng 53:1695–1719

    Article  Google Scholar 

  • Salvadori A, Gray LJ (2007) Analytical integrations and SIFs computation in 2D fracture mechanics. Int J Numer Methods Eng 70:445–495

    Article  Google Scholar 

  • Sladek J, Sladek V, van Le A (1998) Completely regularized integral representations and integral equations for anisotropic bodies with initial strains. J Appl Math Mech 78:771–780

    Google Scholar 

  • Solis M, Sanz JA, Ariza MP, Dominguez J (2009) Analysis of cracked piezoelectric solids by a mixed three-dimensional BE approach. Eng Anal Bound Elem 33:271–282

    Article  Google Scholar 

  • Ting TCT (1996) Anisotropy elasticity: theory and applications. Oxford University Press, New York

    Google Scholar 

  • Tran H (2010) A computational procedure for analysis of fractures in two-dimensional multi-field media. Dissertation, The University of Texas at Austin

  • Wang CY (1994) Two-dimensional elastostatic Green’s functions for general anisotropic solids and generalization of Stroh’s formalism. Int J Solids Struct 31:2591–2597

    Article  Google Scholar 

  • Wang CY (1996) Green’s functions and general formalism for 2D piezoelectricity. Appl Math Lett 9:1–7

    Article  Google Scholar 

  • Xiao L (1998) Symmetric weak-form integral equation method for three dimensional fracture analysis. Dissertation, The University of Texas at Austin

  • Xu G (2000) A variational boundary integral method for the analysis of three-dimensional cracks of arbitrary geometry in anisotropic elastic solids. J Appl Mech 67:403–408

    Google Scholar 

Download references

Acknowledgments

The first author gratefully acknowledges the Vietnam Education Foundation for partial financial support during his study at The University of Texas at Austin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han D. Tran.

Appendices

Appendix A: Somigliana’s identity

Consider a homogeneous finite 2D domain \(\varOmega \) as shown schematically in Fig. 3. The boundary \(\varGamma \) of the domain is composed of two parts: \(\varGamma _t\) on which traction is prescribed and \(\varGamma _u\) on which displacement is prescribed (i.e. \(\varGamma =\varGamma _t\cup \varGamma _u\) and \(\varGamma _t\cap \varGamma _u=\emptyset \)). In the absence of body force, the displacement \(u_J\) satisfies the governing equilibrium equation

$$\begin{aligned} E_{\alpha IJ\beta }\frac{\partial ^2}{\partial \xi _\alpha \partial \xi _\beta }u_J({\varvec{\xi }})&= 0. \end{aligned}$$
(80)
Fig. 3
figure 3

Schematic of homogeneous finite domain under general boundary conditions

We will have a need for the displacement fundamental solution \(U_{J}^{P}({\varvec{\xi }}-{{\varvec{x}}})\) which satisfies

$$\begin{aligned} E_{\alpha IJ\beta }\frac{\partial ^{2}}{\partial \xi _{\alpha }\partial \xi _{\beta }}U_{J}^{P}({\varvec{\xi }}-{{\varvec{x}}})=-\delta _{IP} \, \delta ({\varvec{\xi }}-{{\varvec{x}}}) \end{aligned}$$
(81)

where \(\delta ({\varvec{\xi }}-{{\varvec{x}}})\) is the 2D Dirac delta, and where \(\delta _{IP}\) is a generalized Knonecker delta defined such that \(\delta _{IP}=1\) when \(I=P\) and \(\delta _{IP}=0\) when \(I \ne P\). For future reference we note that the stress fundamental solution follows from the displacement fundamental solution by

$$\begin{aligned} S_{\alpha I}^{P}({\varvec{\xi }}-{{\varvec{x}}}) = E_{\alpha IJ\beta }\frac{\partial }{\partial \xi _\beta }U_{J}^{P}({\varvec{\xi }}-{{\varvec{x}}}). \end{aligned}$$
(82)

Now, multiply Eq. (80) with the fundamental solution and integrate over the domain \(\varOmega \) to find

$$\begin{aligned} \int \limits _{\Omega }{E_{\alpha IJ\beta }\frac{\partial ^2 u_J({\varvec{\xi }})}{\partial \xi _\alpha \partial \xi _\beta }U_I^P({\varvec{\xi }}-{{\varvec{x}}})dA({\varvec{\xi }})}&= 0 \end{aligned}$$
(83)

where \({{\varvec{x}}}\) is the source point of the fundamental problem, and \(dA\) is the infinitesimal area. After integration by parts twice, Eq. (83) becomes

$$\begin{aligned}&-\int \limits _{\Omega }{E_{\alpha IJ\beta }u_J({\varvec{\xi }})\frac{\partial ^2 U_I^P({\varvec{\xi }}-{{\varvec{x}}})}{\partial \xi _{\alpha }\partial \xi _{\beta }}dA({\varvec{\xi }})}\nonumber \\&\quad \quad =\int \limits _{\varGamma }{E_{\alpha IJ\beta }\frac{\partial u_J({\varvec{\xi }})}{\partial \xi _\beta }U_{I}^P({\varvec{\xi }}-{{\varvec{x}}})n_{\alpha }({\varvec{\xi }})ds({\varvec{\xi }})}\nonumber \\&\quad \quad \quad -\int \limits _{\varGamma }{E_{\alpha IJ\beta }u_J({\varvec{\xi }})\frac{\partial U_I^P({\varvec{\xi }}-{{\varvec{x}}})}{\partial \xi _\alpha }n_{\beta }({\varvec{\xi }})ds({\varvec{\xi }})} \nonumber \\ \end{aligned}$$
(84)

where \(n_\alpha \) is the unit normal to the boundary \(\varGamma \) at point \({\varvec{\xi }}\). Utilizing the equilibrium Eq. (81) and the symmetry property of the material constants (i.e. \(E_{\alpha IJ\beta }=E_{\beta JI\alpha }\)), one obtains an integral equation for the displacement at a source point \({{\varvec{x}}}\) in terms of the data on the boundary, i.e. Somigliana’s identity generalized to multi-field media, as

$$\begin{aligned} u_P({{\varvec{x}}})&= \int \limits _{\varGamma }{U_{I}^P({\varvec{\xi }}-{{\varvec{x}}})t_I({\varvec{\xi }})ds({\varvec{\xi }})} \nonumber \\&-\int \limits _{\varGamma }{S_{\beta J}^P({\varvec{\xi }}-{{\varvec{x}}})n_\beta ({\varvec{\xi }})u_J({\varvec{\xi }})ds({\varvec{\xi }})}. \end{aligned}$$
(85)

Appendix B: Demonstration that \(H_{\alpha J}^P n_\alpha = \text{ O }(1)\)

This section establishes that the dot product of the kernel \(H_{\alpha J}^P\) with the normal vector at either the source point \({{\varvec{x}}}\) or the field point \({\varvec{\xi }}\) is regular as \(r\rightarrow 0\). This is demonstrated in a fashion similar to the work of Xiao (1998) for 3D isotropic elastic media, and is included for completeness. For convenience, the expression for kernel \(H_{\alpha J}^P\) (Eq. (16)) is restated as

$$\begin{aligned} H_{\alpha J}^{P}({\varvec{\xi }}-{{\varvec{x}}}) = -\delta _{JP}\frac{\partial }{\partial \xi _{\alpha }}\Bigl (\frac{\ln r}{2\pi }\Bigr ) = -\delta _{JP}\frac{\xi _\alpha -x_\alpha }{2\pi r^2}, \nonumber \\ \end{aligned}$$
(86)

then the dot product \(H_{\alpha J}^P n_\alpha \) becomes

$$\begin{aligned} H_{\alpha J}^{P}n_\alpha = -\delta _{JP}\frac{{{\varvec{r}}}\cdot {{\varvec{n}}}}{2\pi r^2}. \end{aligned}$$
(87)
Fig. 4
figure 4

Local coordinate system employed for the demonstration

For purposes of the demonstration, consider a point \({{\varvec{x}}}\) on a (locally smooth) curve \(\varGamma \) as shown in Fig. 4. At this point, introduce a coordinate system \((\xi _1,\xi _2)\) such that \(\xi _2\) is directed along the opposite direction of the normal \({{\varvec{n}}}({{\varvec{x}}})\) to the curve \(\varGamma \) at the point \({{\varvec{x}}}\). In the vicinity of \({{\varvec{x}}}\), \(\varGamma \) can be represented as

$$\begin{aligned} \xi _2=f(\xi _1) \end{aligned}$$
(88)

where \(f\) is a function to define the curve \(\varGamma \). Then

$$\begin{aligned} {{\varvec{n}}}({{\varvec{x}}})\cdot {{\varvec{r}}}=-\xi _2=-f(\xi _1). \end{aligned}$$
(89)

To proceed, a Taylor expansion of \(f\) about \({{\varvec{x}}}\) is given as

$$\begin{aligned} f(\xi _1)={1\over 2}f^{\prime \prime }(0)\xi _1^2+\mathcal O (\xi _1^3) \end{aligned}$$
(90)

where we used the fact that \(f^{\prime }(0)=0\) since the normal vector \({{\varvec{n}}}({{\varvec{x}}})\) is in the direction of the \(\xi _2\)-axis. Note that \(\xi _1=r\cos \theta \), so Eq. (90) becomes

$$\begin{aligned} f(\xi _1)={1\over 2}f^{\prime \prime }(0)r^2\cos ^2\theta +\mathcal O (r^3). \end{aligned}$$
(91)

The combination of Eqs. (89) and (91) leads to the result

$$\begin{aligned} \frac{{{\varvec{n}}}({{\varvec{x}}})\cdot {{\varvec{r}}}}{r^2}=\mathcal O (1) \quad \text{ as } r\rightarrow 0. \end{aligned}$$
(92)

Now consider the case of the normal vector at the field point \({\varvec{\xi }}\). With the expression for \(\varGamma \) given by Eq. (88), components of the normal vector \({{\varvec{n}}}\) at the field point \({\varvec{\xi }}\) are as follows

$$\begin{aligned} {{\varvec{n}}}({\varvec{\xi }})=\bigl (f^{\prime }(\xi _1),-1\bigr ). \end{aligned}$$
(93)

Note that, in (93), the normal vector \({{\varvec{n}}}({\varvec{\xi }})\) is not normalized to become a unit vector yet. The dot product of \({{\varvec{n}}}({\varvec{\xi }})\) and \({{\varvec{r}}}\) becomes

$$\begin{aligned} {{\varvec{n}}}({\varvec{\xi }})\cdot {{\varvec{r}}}= f^{\prime }(\xi _1)\xi _1-\xi _2 = f^{\prime }(\xi _1)\xi _1 - f(\xi _1). \end{aligned}$$
(94)

Forming a Taylor expansion of \(f^{\prime }(\xi _1)\) about \({{\varvec{x}}}\), we have

$$\begin{aligned} f^{\prime }(\xi _1) = f^{\prime \prime }(0)\xi _1+\mathcal O (\xi _1^2). \end{aligned}$$
(95)

Combining Eqs. (90), (94) and (95), we have

$$\begin{aligned} {{\varvec{n}}}({\varvec{\xi }})\cdot {{\varvec{r}}}&= \frac{1}{2}f^{\prime \prime }(0)\xi _1^2+\mathcal O (\xi _1^3) \quad \text{ as } r\rightarrow 0. \end{aligned}$$
(96)

Similarly to the previous case, noting \(\xi _1=r\cos \theta \), Eq. (96) leads to

$$\begin{aligned} \frac{{{\varvec{n}}}({\varvec{\xi }})\cdot {{\varvec{r}}}}{r^2}=\mathcal O (1) \quad \text{ as } r\rightarrow 0. \end{aligned}$$
(97)

Appendix C: Radon transform

We provide a summary of certain properties of the Radon transform that are relevant to our development. More details of the Radon transform and its applications can be found in Deans (1983). The Radon transform involves two independent transform parameters: a unit vector \({{\varvec{z}}}\) and a scalar \(p\). In a 2D Euclidean plane, a line \(L\) that is perpendicular to \({{\varvec{z}}}\) and has a distance of \(p\) to the origin of the coordinate system, as shown in Fig. 5, is defined by the equation \({{\varvec{z}}}\cdot {\varvec{\xi }}=p\). Let \(f=f({\varvec{\xi }})\) be a function defined on a domain \(\varOmega \in \mathbb{R }^2\). Then the Radon transform of \(f({\varvec{\xi }})\) is defined as the integral of \(f({\varvec{\xi }})\) along this line, provided the integral exists, i.e.

$$\begin{aligned} \hat{f}({{\varvec{z}}},p) = \mathcal R f({\varvec{\xi }}) = \int \limits _{{{\varvec{z}}}\cdot {\varvec{\xi }}=p}f({\varvec{\xi }})ds = \int \limits _{\mathbb{R }^2}f({\varvec{\xi }})\delta (p-{{\varvec{z}}}\cdot {\varvec{\xi }})dA\nonumber \\ \end{aligned}$$
(98)

where \(ds\) and \(dA\) denote infinitesimal length and area respectively, and \(\delta (p-{{\varvec{z}}}\cdot {\varvec{\xi }})\) is the 2D Dirac delta ‘centered’ at the line \({{\varvec{z}}}\cdot {\varvec{\xi }}=p\).

Fig. 5
figure 5

Line \(L\) and its parameters utilized in the definition of the Radon transform

The function \(f({\varvec{\xi }})\) is then given in terms of its Radon transform \(\hat{f}({{\varvec{z}}},p)\) defined in (98) by the inversion formula

$$\begin{aligned} f({\varvec{\xi }})=\frac{1}{4\pi ^2}\oint \limits _{\Vert {{\varvec{z}}}\Vert =1}{\int \limits _{-\infty }^{\infty }{\frac{\partial ^2 \hat{f}({{\varvec{z}}},p)}{\partial p^2}\ln |p-{{\varvec{z}}}\cdot {\varvec{\xi }}|\,dp}}\,ds \nonumber \\ \end{aligned}$$
(99)

in which the outer integration is taken over a unit circle.

Certain useful properties and results of the Radon transform that pertain to our development are summarized below.

  1. 1.

    Shifting property: The Radon transform of a function \(f({\varvec{\xi }}-{{\varvec{x}}})\) where \({{\varvec{x}}}\) is a fixed point is given by

    $$\begin{aligned} \mathcal R f({\varvec{\xi }}-{{\varvec{x}}})&= \int \limits _{\mathbb{R }^2}{f({\varvec{\xi }}-{{\varvec{x}}})\delta (p-{{\varvec{z}}}\cdot {\varvec{\xi }})dA} \nonumber \\&= \hat{f}({{\varvec{z}}},p-{{\varvec{z}}}\cdot {{\varvec{x}}}). \end{aligned}$$
    (100)

    Then application of the inversion formula (99) for the function \(f({\varvec{\xi }}-{{\varvec{x}}})\) gives

    $$\begin{aligned}&f({\varvec{\xi }}-{{\varvec{x}}}) = \nonumber \\&\ \frac{1}{4\pi ^2}\oint \limits _{\Vert {{\varvec{z}}}\Vert =1}\int \limits _{-\infty }^{\infty }\frac{\partial ^2 \hat{f}({{\varvec{z}}},p\!-\!{{\varvec{z}}}\cdot {{\varvec{x}}})}{\partial p^2}\ln |p\!-\!{{\varvec{z}}}\cdot {\varvec{\xi }}|dp \, ds. \nonumber \\ \end{aligned}$$
    (101)
  2. 2.

    For a particular case where the function \(\frac{\partial ^2 \hat{f}({{\varvec{z}}},p-{{\varvec{z}}}\cdot {{\varvec{x}}})}{\partial p^2}\) in (101) is expressed as

    $$\begin{aligned} \frac{\partial ^2 \hat{f}({{\varvec{z}}},p-{{\varvec{z}}}\cdot {{\varvec{x}}})}{\partial p^2}=g({{\varvec{z}}})\delta (p-{{\varvec{z}}}\cdot {{\varvec{x}}}) \end{aligned}$$
    (102)

    where \(g({{\varvec{z}}})\) is a suitably well-behaved function of \({{\varvec{z}}}\), then (101) becomes

    $$\begin{aligned} f({\varvec{\xi }}-{{\varvec{x}}})=\frac{1}{4\pi ^2}\oint \limits _{\Vert {{\varvec{z}}}\Vert =1}{g({{\varvec{z}}})\ln |{{\varvec{z}}}\cdot ({\varvec{\xi }}-{{\varvec{x}}})|\,ds}. \nonumber \\ \end{aligned}$$
    (103)

    This special inversion formula plays a key role in our development; while it is readily obtained from standard inversion formulas for the Radon transform, we are unaware of it being pointed out previously in the literature. It is analogous to a result for the 3D Radon transform that is, however, widely known (and in that case is associated with functions \(f({\varvec{\xi }}-{{\varvec{x}}})\) having a \(1/r\) singularity where \(r=\Vert {\varvec{\xi }}-{{\varvec{x}}}\Vert \)).

  3. 3.

    The Radon transform of the derivative of a function satisfies

    $$\begin{aligned} \mathcal R \biggl (\frac{\partial f({\varvec{\xi }})}{\partial \xi _\alpha }\biggr )=z_\alpha \frac{\partial \hat{f}({{\varvec{z}}},p)}{\partial p}. \end{aligned}$$
    (104)
  4. 4.

    The Radon transform of a 2D Dirac delta is given by

    $$\begin{aligned} \mathcal R \delta ({\varvec{\xi }}-{{\varvec{x}}})=\delta (p-{{\varvec{z}}}\cdot {{\varvec{x}}}). \end{aligned}$$
    (105)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, H.D., Mear, M.E. Regularized boundary integral equations for two-dimensional crack problems in multi-field media. Int J Fract 181, 99–113 (2013). https://doi.org/10.1007/s10704-013-9823-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-013-9823-6

Keywords

Navigation