Skip to main content
Log in

Theory of Stochastic Schrödinger Equation in Complex Vector Space

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A generalized Schrödinger equation containing correction terms to classical kinetic energy, has been derived in the complex vector space by considering an extended particle structure in stochastic electrodynamics with spin. The correction terms are obtained by considering the internal complex structure of the particle which is a consequence of stochastic average of particle oscillations in the zeropoint field. Hence, the generalised Schrödinger equation may be called stochastic Schrödinger equation. It is found that the second order correction terms are similar to corresponding relativistic corrections. When higher order correction terms are neglected, the stochastic Schrödinger equation reduces to normal Schrödinger equation. It is found that the Schrödinger equation contains an internal structure in disguise and that can be revealed in the form of internal kinetic energy. The internal kinetic energy is found to be equal to the quantum potential obtained in the Madelung fluid theory or Bohm statistical theory. In the rest frame of the particle, the stochastic Schrödinger equation reduces to a Dirac type equation and its Lorentz boost gives the Dirac equation. Finally, the relativistic Klein–Gordon equation is derived by squaring the stochastic Schrödinger equation. The theory elucidates a logical understanding of classical approach to quantum mechanical foundations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer, T.H.: Random electrodynamics: the theory of classical electrodynamics with classical electromagnetic zeropoint radiation. Phys. Rev. D 11, 790–808 (1975)

    Article  ADS  Google Scholar 

  2. Boyer, T.H.: A brief survey of stochastic electrodynamics. In: Barut, O.A. (ed.) Foundations of Radiation Theory and Quantum Electrodynamics, pp. 49–63. Springer, New York (1980)

    Chapter  Google Scholar 

  3. Cole, D.C.: Reviewing and extending some recent work on stochastic electrodynamics. In: Lakhtakia, A. (ed.) Essays on the Formal Aspects of Electromagnetic Theory, pp. 501–532. World Scientific Publ. Co., Singapore (1993)

    Chapter  Google Scholar 

  4. de la Peña, L., Cetto, A.M.: Quantum Dice: An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996)

    Book  Google Scholar 

  5. Schrödinger, E.: Quantisation as a Problem of Proper Values (Part I). Collected Papers of Wave Mechanics, pp. 1–12. Blackie and Son, London (1928)

    Google Scholar 

  6. Fenyes, I.: Eine wahrscheinlichkeitstheoretische begründung und interpretation der quantenmechanik. Zeit. Phys. 132, 81 (1952)

  7. Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)

    MATH  Google Scholar 

  8. Nelson, E.: Derivation of Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)

    Article  ADS  Google Scholar 

  9. Della Riccia, G., Wiener, N.: Wave mechanics in classical phase space, Brownian motion, and quantum theory. J. Math. Phys. 7, 1372 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  10. Favella, I.F.: Brownian motions in quantum mechanics. Ann. Inst. Henri Poincáre 7, 77 (1967)

    MATH  Google Scholar 

  11. de la Peña, L., Cetto, A.M.: Stochastic theory for classical and quantum mechanical systems. Found. Phys. 5, 355 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  12. de la Peña-Auerback, L.: New formulation of stochastic theory and quantum mechanics. J. Math. Phys. 10, 1620–1630 (1969)

    Article  MATH  ADS  Google Scholar 

  13. de la Peña-Auerback, L.: Stochastic theory of quantum mechanics for particles with spin. J. Math. Phys. 12, 453–461 (1971)

    Article  ADS  Google Scholar 

  14. de la Peña, L., Cetto, A.M., Hernández, A.V.: The Emerging Quantum: The Physics Behind Quantum Mechanics. Springer, Cham (2015)

    MATH  Google Scholar 

  15. Cetto, A.M., de la Peña, L.: Specificity of Schrödinger equation. Quantum Stud. Math. Found. 2, 275–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cavalleri, G.: Schrödinger’s equation as a consequence of of zitterbewegung. Lett. Nuovo Cimento. 43, 285 (1985)

    Article  MathSciNet  Google Scholar 

  17. Cavalleri, G., Mauri, G.: Integral expansion often reducing the density gradient expansion, extended to non-Markov stochastic process: Consequent non-Markovian stochastic equation whose leading terms coincide with Schrödinger’s. Phys. Rev. B 41, 6751–6758 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  18. Cavalleri, G., Zecca, A.: Interpretation of Schrödinger like equation derived from non-Markovian process. Phys. Rev. B 43, 3223–3227 (1991)

    Article  ADS  Google Scholar 

  19. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  MATH  ADS  Google Scholar 

  20. Dechoum, K., França, H.M., Malta, C.P.: Towards a classical reinterpretation of the Schrödinger equation according to stochastic electrodynamics. In: Amoroso, R.L., et al. (eds.) Gravitation and Cosmology: From the Hubble Radius to the Planck Scale, pp. 393–400. Kluwer, Dordrecht (2002)

    Chapter  Google Scholar 

  21. Faria, A.J., França, H.M., Gomes, G.G., Sponchiado, R.C.: The vacuum electromagnetic fields and the Schrödinger equation. Found. Phys. 37, 1296–1305 (2007)

    Article  MATH  ADS  Google Scholar 

  22. Dechoum, K., França, H.M., Malta, C.P.: Classical aspects of Pauli-Schrödinger equation. Phys. Lett. A 248, 93–102 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Olavo, L.S.F.: Foundations of quantum mechanics: non-relativistic theory. Physica A 262, 197–214 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  24. Olavo, L.S.F.: Foundations of quantum mechanics: Connection with stochastic processes. Phys. Rev. A 61, 052109-1–052109-14 (2000)

    Article  ADS  Google Scholar 

  25. Hall, M.J.W., Reginatto, M.: Schrödinger equation from exact uncertainty principle. J. Phys. A 35, 3289–3303 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Schleich, W.P., Greenberger, D.M., Kobe, D.H., Scully, M.O.: Schrödinger equation revisited. Proc. Natl. Acad. Sci. USA 110, 5374–5379 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Schleich, W.P., Greenberger, D.M., Kobe, D.H., Scully, M.O.: A wave equation interpolating between classical and quantum mechanics. Phys. Scr. 90, 108009 (2015)

    Article  ADS  Google Scholar 

  28. Grössing, G.: Sub-quantum thermodynamics as a basis of emergent quantum mechanics. Entropy 12, 1975–2044 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Grössing, G.: The vacuum fluctuation theorem: exact Schrödinger equation via nonequilibrium thermodynamics. Phys. Let. A 372, 4556–4563 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Grössing, G.: On the thermodynamic origin of quantum potential. Physica A 388, 811–823 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  31. Sakurai, J.J.: Advanced Quantum Mechanics. Pearson Education, New Delhi (2007)

    Google Scholar 

  32. Barut, A.O., Bracken, A.J.: Zitterbewegung and the internal geometry of electron. Phys. Rev. D 23, 2454 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  33. Bhabha, H.J., Corben, H.C.: General classical theory of spinning particles in a Maxwell’s field. Proc. R. Soc. Lond. A 178(974), 273–314 (1941)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Corben, H.C.: Spin in classical and quantum theories. Phys. Rev. 121, 1833–1839 (1961)

    Article  MATH  ADS  Google Scholar 

  35. Corben, H.C.: Classical and Quantum Theories of Spinning Particles. Holden and Day, New York (1968)

    Google Scholar 

  36. Mathisson, M.: Neue mekhanik materietter system. Acta Phys. Pol. 6, 163–200 (1937)

    Google Scholar 

  37. Barut, O.A., Zanghi, A.J.: Classical model of the dirac electron. Phys. Rev. Lett. 52, 2009–2012 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  38. Salesi, G.: The spin and Madelung fluid. Mod. Phys. Lett. A 11, 1815–1853 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Recami, E., Salesi, G.: Kinematics and hydrodynamics of spinning particles. Phys. Rev. A 57, 98–105 (1998)

    Article  MATH  ADS  Google Scholar 

  40. Salesi, G., Recami, E.: A veleocity field and operator for spinning particles in (nonrelativistic) quantum mechanics. Found. Phys. 28, 763–773 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  41. Salesi, G., Recami, E.: Hydrodynamical reformulation and quantum limit of the Barut-Zanghi theory. Found. Phys. Lett. 10, 533–546 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pavšič, M., Recami, E., Rodrigues, W.A., Maccarrone, G.D., Raciti, F., Saleci, G.: Spin and electron structure. Phys. Lett. B 318, 481 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  43. Muralidhar, K.: Complex vector formalism of harmonic oscillator in geometric algebra: particle mass, spin and dynamics in complex vector space. Found. Phys. 44, 265–295 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. Muralidhar, K.: Algebra of complex vectors and applications in electromagnetic theory and quantum mechanics. Mathematics 3, 781–842 (2015)

    Article  MATH  Google Scholar 

  45. Muralidhar, K.: Classical origin of quantum spin. Apeiron 6, 146–160 (2011)

    Google Scholar 

  46. Muralidhar, K.: The spin bivector and zeropoint energy in geometric algebra. Adv. Stud. Theor. Phys. 6, 675–686 (2012)

    Google Scholar 

  47. Hestenes, D.: Zitterbewegung in quantum mechanics. Found. Phys. 40, 1–54 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables I. Phys. Rev. 85, 166–179 (1952)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables II. Phys. Rev. 85, 180–193 (1952)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  50. Muralidhar, K.: Classical approach to quantum condition and biaxial spin connection to the Schrödinger equation. Quantum Stud. Math. Found. 3, 31–39 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hestenes, D.: Spin and uncertainty in the interpretation of quantum mechanics. Am. J. Phys. 47, 399–415 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  52. Snyder, H.S.: Quantized space-time. Phys. Rev. 71, 38–41 (1947)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  54. Hestenes, D.: Oersted medal lecture 2002: Reforming the mathematical language of physics. Am. J. Phys. 71, 104 (2003)

    Article  ADS  Google Scholar 

  55. Hestenes, D.: Space-Time Algebra. Gordon and Breach Science Publishers, New York (1966)

    MATH  Google Scholar 

  56. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kundeti Muralidhar.

Appendix: Algebra of Complex Vectors

Appendix: Algebra of Complex Vectors

The geometric algebra or Clifford algebra is found to be a superior algebra than the vector algebra and it is being used by a growing number of mathematicians and physicists today [54, 55]. A detailed account of geometric algebra and its applications to physics is given in the book by Doran and Lasenby [56]. An introduction to geometric algebra and the algebra of complex vectors are considered in this appendix.

The geometric product of two vectors \(\mathbf {a}\) and \(\mathbf {b}\) is defined as

$$\begin{aligned} \mathbf {a}\mathbf {b}=\mathbf {a}{\cdot }\mathbf {b}+\mathbf {a}\wedge \mathbf {b}, \end{aligned}$$
(68)

where the scalar product or symmetric product is defined as

$$\begin{aligned} \mathbf {a}{\cdot }\mathbf {b}= \frac{1}{2}(\mathbf {a}\mathbf {b}+\mathbf {b}\mathbf {a}), \end{aligned}$$
(69)

and the wedge product or outer product is defined as

$$\begin{aligned} \mathbf {a} \wedge \mathbf {b}= \frac{1}{2}(\mathbf {a}\mathbf {b}-\mathbf {b}\mathbf {a}). \end{aligned}$$
(70)

Changing the order of vectors is called reversion operation and it is denoted by an over bar.

$$\begin{aligned} \overline{\mathbf {a}\mathbf {b}}=\mathbf {b}\mathbf {a} =\mathbf {a}{\cdot }\mathbf {b}-\mathbf {a}\wedge \mathbf {b}, \end{aligned}$$
(71)

A set of unit right handed basis vectors \(\lbrace \mathbf {\sigma }_k;k=1,2,3\rbrace \) is considered to span the three dimensional space. A pseudoscalar in three dimensional space is defined as \(\mathbf {i}=\mathbf {\sigma }_1\mathbf {\sigma }_2\mathbf {\sigma }_3\) and it represents a unit oriented volume. Multiplying vectors \(\mathbf {\sigma }_k\) by pseudoscalar form unit bivectors, \(B_k=\mathbf {i}\mathbf {\sigma }_k=\mathbf {\sigma }_i\mathbf {\sigma }_j.\) Each unit bivector represents an oriented plane. The set of elements \(\lbrace 1,\mathbf {\sigma }_k,B_k,\mathbf {i};k=1,2,3\rbrace \) form geometric algebra of Euclidean space. A general element in geometric algebra is called a multivector and it is a sum of a scalar, vector, bivector and trivector.

$$\begin{aligned} M=\alpha +\mathbf {a}+ \mathbf {ib} + \mathbf {i} \delta , \end{aligned}$$
(72)

where \(\alpha \) and \(\delta \) are scalars, \(\mathbf {a}\) and \(\mathbf {b}\) are vectors and \(\mathbf {i}\delta \) is a trivector. A complex vector is defined as a sum of a vector and a bivector.

$$\begin{aligned} Z=\mathbf {a}+\mathbf {ib} \end{aligned}$$
(73)

The advantage of this definition of complex vector gives an additional geometric understanding of orientation and rotation in space. A reversion operation on a complex vector changes the sign of bivector.

$$\begin{aligned} \bar{Z}=\mathbf {a}-\mathbf {ib} \end{aligned}$$
(74)

The complex vector \(\bar{Z}\) is known as complex conjugate of Z. Two complex vectors are equal when their vector and bivector parts are equal. The inner product of two complex vectors \(Z=\mathbf {a}+\mathbf {ib}\) and \(Y=\mathbf {c}+\mathbf {id}\) can be expressed as

$$\begin{aligned} Z.Y=(\mathbf {a}{\cdot }\mathbf {c}-\mathbf {b}{\cdot }\mathbf {d})+\mathbf {i}(\mathbf {b}{\cdot }\mathbf {c}+\mathbf {a}{\cdot }\mathbf {d})= \alpha + \mathbf {i}\beta . \end{aligned}$$
(75)

Thus the scalar product of two complex vectors is a complex scalar. The outer product of complex vectors Z and Y is

$$\begin{aligned} Z\wedge Y=(\mathbf {a}\wedge \mathbf {c}-\mathbf {b}\wedge \mathbf {d})+\mathbf {i}(\mathbf {b}\wedge \mathbf {c}+\mathbf {a}\wedge \mathbf {d}) . \end{aligned}$$
(76)

The term \((\mathbf {a}\wedge \mathbf {c}-\mathbf {b}\wedge \mathbf {d})\) is a bivector and the term \(\mathbf {i}(\mathbf {b}\wedge \mathbf {c}+\mathbf {a}\wedge \mathbf {d})\) is vector. Thus, the outer product of two complex vectors is a complex vector. From the above two products one can see that the geometric product of two complex vectors is a combination of a scalar, vector, bivector and trivector parts. Thus the geometric product of two complex vectors is a multivector. The inner and outer products of complex vectors are in general known as symmetric and asymmetric products respectively. Two complex vectors \(Z=\mathbf {a}+\mathbf {ib}\) and \(Y=\mathbf {c}+\mathbf {id}\) are said to be perpendicular when the condition \(\mathbf {a}{\cdot } \mathbf {c}=0\) is satisfied and they are parallel when the condition \(\mathbf {a} \wedge \mathbf {c}=0\) is satisfied. The square of a complex vector is a complex scalar.

$$\begin{aligned} Z^2=(\mathbf {a}+\mathbf {ib})(\mathbf {a}+\mathbf {ib})=a^2 +b^2 +2\mathbf {i}(\mathbf {a}{\cdot }\mathbf {b}) \end{aligned}$$
(77)

Consider that the vectors \(\mathbf {a}\) and \(\mathbf {b}\) are orthogonal to each other. Then the scalar product \(\mathbf {a}{\cdot }\mathbf {b}=0\). In this case, the complex vector represents an oriented directional ellipse. The bivector \(\mathbf {i b}\) represents an oriented plane and the vector \(\mathbf {a}\) lies in the plane of \(\mathbf {i b}\). The rotation in the plane \(\mathbf {i b}\) is counterclockwise for the complex vector Z and clockwise for \(\bar{Z}\). The product of a complex vector with its conjugate contains scalar and vector parts. The products \(Z\bar{Z}\) and \(\bar{Z}Z\) are written in the following form.

$$\begin{aligned} \bar{Z}Z= a^2 +b^2 +2\mathbf {i}(\mathbf {a}\wedge \mathbf {b}) \end{aligned}$$
(78)
$$\begin{aligned} Z\bar{Z}= a^2 +b^2 -2\mathbf {i}(\mathbf {a}\wedge \mathbf {b}) \end{aligned}$$
(79)

Since, \(\mathbf {i}\) is a pseudoscalar which commutes with all vectors in three dimensional space, the quantity \(2\mathbf {i}(\mathbf {a}\wedge \mathbf {b})\) is a vector and it is normal to the orientation of the bivector \(\mathbf {a}\wedge \mathbf {b}\). The scalar part of (78) is equal to the scalar product of \(\bar{Z}\) and Z.

$$\begin{aligned} \bar{Z}.Z= \frac{1}{2} (\bar{Z}Z+Z\bar{Z})= a^2 +b^2 \end{aligned}$$
(80)

The vector part of (78) is equal to the outer product of \(\bar{Z}\) and Z.

$$\begin{aligned} \bar{Z} \wedge Z= \frac{1}{2} (\bar{Z}Z-Z\bar{Z})= 2\mathbf {i}(\mathbf {a}\wedge \mathbf {b}) \end{aligned}$$
(81)

In the case when the magnitudes of vectors \(\mathbf {a}\) and \(\mathbf {b}\) are equal, the complex vector represents an oriented directional circle. Then the square of complex vector \( Z^2 = \bar{Z}^2 = 0\) and therefore in this case the complex vector may be called complex null vector.

When the third direction is chosen normal to the bivector plane \(\mathbf {a}\wedge \mathbf {b}\), the complex vector Z and its conjugate \(\bar{Z}\) represent a physical space. If we choose a set of orthonormal right handed unit vectors \(\lbrace \mathbf {\sigma }_k;k=1,2,3\rbrace \) along the direction of vectors \(\mathbf {a}\), \(\mathbf {b}\) and \(2\mathbf {i}(\mathbf {a}\wedge \mathbf {b})\), the unit vectors \(\mathbf {\sigma }_k\) can be expressed in terms of complex vectors Z and \(\bar{Z} \).

$$\begin{aligned} \mathbf {\sigma }_1 = \frac{Z+\bar{Z}}{2a}; \mathbf {\sigma }_2 =\frac{Z-\bar{Z}}{2a}; \mathbf {\sigma }_3 =\frac{Z\bar{Z}-\bar{Z}Z}{4ab}; 1 =\frac{Z\bar{Z}+\bar{Z}Z}{4ab} \end{aligned}$$
(82)

The basis elements \(\lbrace 1, \mathbf {\sigma }_k \rbrace \) form a closed complex four dimensional linear space. A complete version of complex vector algebra is elaborated in [44].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muralidhar, K. Theory of Stochastic Schrödinger Equation in Complex Vector Space. Found Phys 47, 532–552 (2017). https://doi.org/10.1007/s10701-017-0076-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-017-0076-5

Keywords

Navigation