Skip to main content
Log in

Weak Value, Quasiprobability and Bohmian Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We clarify the significance of quasiprobability (QP) in quantum mechanics that is relevant in describing physical quantities associated with a transition process. Our basic quantity is Aharonov’s weak value, from which the QP can be defined up to a certain ambiguity parameterized by a complex number. Unlike the conventional probability, the QP allows us to treat two noncommuting observables consistently, and this is utilized to embed the QP in Bohmian mechanics such that its equivalence to quantum mechanics becomes more transparent. We also show that, with the help of the QP, Bohmian mechanics can be recognized as an ontological model with a certain type of contextuality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mermin, D.: Physics: QBism puts the scientist back into science. Nature 507, 421 (2014)

    Article  ADS  Google Scholar 

  2. Fuchs, C.A.: QBism, the perimeter of quantum Bayesianism. (preprint) arXiv:1003.5209 (2010)

  3. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  4. Dressel, J., Malik, M., Miatto, F.M., Jordan, A.N., Boyd, R.W.: Colloquium: understanding quantum weak values: basics and applications. Rev. Mod. Phys. 86, 307 (2014)

    Article  ADS  Google Scholar 

  5. Denkmayr, T., Geppert, H., Sponar, S., Lemmel, H., Matzkin, A., Tollaksen, J., Hasegawa, Y.: Observation of a quantum Cheshire Cat in a matter-wave interferometer experiment. Nat. Commun. 1, 5–10 (2014). doi:10.1038/ncomms5492

    Google Scholar 

  6. Bamber, C., Lundeen, J.S.: Observing diracs classical phase space analog to the quantum state. Phys. Rev. Lett. 112, 070405 (2014)

    Article  ADS  Google Scholar 

  7. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. I. Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. I. Phys. Rev. 85, 180 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Morita, T., Sasaki, T., Tsutsui, I.: Complex probability measure and Aharonov’s weak value. Prog. Theor. Exp. Phys. 2013(5), 053A02 (2013)

  10. Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6, 885 (1957)

    MathSciNet  MATH  Google Scholar 

  11. Kirkwood, J.G.: Quantum statistics of almost classical assemblies. Phys. Rev. 44, 31 (1933)

    Article  ADS  MATH  Google Scholar 

  12. Dirac, P.A.M.: On the analogy between classical and quantum mechanics. Rev. Mod. Phys. 17, 195 (1945)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Terletsky, Y.P.: On the classical limit of quantum mechanics. Zh. Eksp. Teor. Fiz. 7, 1290 (1937)

    Google Scholar 

  14. Margenau, H., Hill, R.N.: Correlation between measurements in quantum theory. Prog. Theor. Phys. 26, 722 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  15. Mehta, C.: Phase-space formulation of the dynamics of canonical variables. J. Math. Phys. 5, 677 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Johansen, L.M.: Nonclassical properties of coherent states. Phys. Lett. A 329, 184 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Chaturvedi, S., Ercolessi, E., Marmo, G., Morandi, G., Mukunda, N., Simon, R.: Phase-space descriptions of operators and the Wigner distribution in quantum mechanics I. A Dirac inspired view. J. Phys. A 39, 1405 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hofmann, H.: Reasonable conditions for joint probabilities of non-commuting observables. Quantum Stud. 1, 39–45 (2014)

    Article  MATH  Google Scholar 

  19. Feyereisen, M.R.: How the weak variance of momentum can turn out to be negative. Found. Phys. 45, 535–556 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Dressel, J.: Weak values as interference phenomena. Phys. Rev. A 91, 032116 (2015)

    Article  ADS  Google Scholar 

  21. Ozawa, M.: Universal uncertainty principle, simultaneous measurability, and weak values. AIP Conf. Proc. 1363, 53 (2011)

    Article  ADS  MATH  Google Scholar 

  22. Spekkens, R.W.: Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71, 052108 (2005)

    Article  ADS  Google Scholar 

  23. Harrigan, N., Spekkens, R.W.: Einstein, incompleteness, and the epistemic view of quantum states. Found. Phys. 40, 125 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Dürr, D., Goldstein, S., Zanghí, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Holland, P.R.: The Quantum Theory of Motion: an Account of the Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  26. Wiseman, H.W.: Grounding Bohmian mechanics in weak values and bayesianism. New J. Phys. 9, 165 (2007)

    Article  ADS  Google Scholar 

  27. Feintzeig, B.: Can the ontological models framework accommodate Bohmian mechanics? Stud. Hist. Philos. Modern Phys. 48, 59 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59 (1967)

    MathSciNet  MATH  Google Scholar 

  29. Schiller, R.: Quasi-classical theory of the nonspinning electron. Phys. Rev. 125, 11001108 (1962)

    MathSciNet  MATH  Google Scholar 

  30. Bell, J.S.: On the einstein podolsky rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  31. Bell, J. S.: Introduction to the hidden-variable question. In: B. d’Espagnet (ed.) Proceedings of the International School of Physics, ‘Enrico Fermi’, course IL. Academic, New York, p. 171 (1971)

  32. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  ADS  MATH  Google Scholar 

  33. Jordan, P., von Neumann, J., Wigner, E.P.: On an algebraic generalization of the quantum mechanical formalism. Ann. Math. 35, 29 (1934)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank R. Koganezawa for his valuable suggestion in the early stage of the work. This work was supported in part by JSPS KAKENHI Nos. 25400423, 26011506, and by the Center for the Promotion of Integrated Sciences (CPIS) of SOKENDAI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Fukuda.

Appendix: Some Useful Formulas for the \(\circ _{\alpha }\)-Product

Appendix: Some Useful Formulas for the \(\circ _{\alpha }\)-Product

The \(\circ _{\alpha }\)-product (16) for two operators X and Y on \(\mathscr {H}\) is defined by

$$\begin{aligned} X\circ _{\alpha }Y:=\alpha XY+\left( 1-\alpha \right) YX, \end{aligned}$$
(67)

with \(\alpha \in \mathbb {C}\). For \(\alpha =1\) and \(\alpha =0\), the \(\circ _{\alpha }\)-product becomes the usual operator product,

$$\begin{aligned} X\circ _{\alpha =1}Y=XY, \qquad X\circ _{\alpha =0}Y=YX, \end{aligned}$$
(68)

whereas for \(\alpha =1/2\) it reduces to the Jordan product [33],

$$\begin{aligned} X\circ _{\alpha =\frac{1}{2}}Y=\frac{1}{2}\left( XY+YX\right) . \end{aligned}$$
(69)

If we put \(\alpha = s + it\) with real st, we have

$$\begin{aligned} X\circ _{\alpha =s+it}Y = s XY+\left( 1-s\right) YX+it \left[ X,Y\right] = X\circ _s Y+it\left[ X,Y\right] , \end{aligned}$$
(70)

where \([X,Y]=XY-YX\) is the commutator. In particular, for \(\alpha =\frac{1}{2}\left( 1-i\right) \) we find

$$\begin{aligned} X\circ _{\alpha =\frac{1}{2}\left( 1-i\right) }Y=\frac{1}{2}\{X,Y\}+\frac{1}{2i}[X,Y], \end{aligned}$$
(71)

where \(\{X,Y\}=XY+YX\) is the anti-commutator. In addition, the \(\circ _{\alpha }\)-product has the following properties:

$$\begin{aligned} I\circ _{\alpha }X= & {} X\circ _{\alpha }I=X, \end{aligned}$$
(72)
$$\begin{aligned} X\circ _{\alpha }X= & {} X^{2},\end{aligned}$$
(73)
$$\begin{aligned} X\circ _{\alpha }Y-Y\circ _{\alpha }X= & {} \left( 2\alpha -1\right) [X,Y], \end{aligned}$$
(74)
$$\begin{aligned} X\circ _{\alpha }Y+Y\circ _{\alpha }X= & {} XY+YX, \end{aligned}$$
(75)
$$\begin{aligned} {} [X , Y] = 0\,\Rightarrow & {} \, X \circ _{\alpha } Y=XY=YX, \end{aligned}$$
(76)

with I being the identity operator on \(\mathscr {H}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuda, K., Lee, J. & Tsutsui, I. Weak Value, Quasiprobability and Bohmian Mechanics. Found Phys 47, 236–255 (2017). https://doi.org/10.1007/s10701-016-0054-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-0054-3

Keywords

Navigation