Skip to main content
Log in

Black Holes, Information Loss and the Measurement Problem

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The information loss paradox is often presented as an unavoidable consequence of well-established physics. However, in order for a genuine paradox to ensue, not-trivial assumptions about, e.g., quantum effects on spacetime, are necessary. In this work we will be explicit about these additional, speculative assumptions required. We will also sketch a map of the available routes to tackle the issue, highlighting the, often overlooked, commitments demanded of each alternative. Finally, we will display the strong link between black holes, the issue of information loss and the measurement problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. A Cauchy hypersurface is a subset of spacetime which is intersected exactly once by every inextensible, non-spacelike curve.

  2. Future null infinity is the set of points which are approached asymptotically by null rays which can escape to infinity.

  3. This is a process, studied in [21], by which a rotating black hole can convert some of its “rotation energy” into kinetic energy.

  4. The ADM mass is a quantity associated with the asymptotic behavior of the induced spatial metric of a Cauchy hypersurface. In asymptotically flat spacetimes, it is known to be independent of the hypersurface on which it is evaluated (see [2]).

  5. Note however that the argument can be easily reversed to show exactly the opposite. Since Hawking’s result shows that unitarity breaks when black holes are present, one must conclude that quantum evolution cannot be unitary even in a quantum field theory on flat spacetimes.

References

  1. Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? JHEP 62, (2013)

  2. Deser, S., Misner, C.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: an Introduction to Current Research. Wiley, New York (1962)

    Google Scholar 

  3. Ashtekar, A., Bojowald, M.: Black hole evaporation: a paradigm. Class. Quant. Grav. 22(16), 3349 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Banks, T.: Lectures on black hole information loss. Nucl. Phys. Proc. 41(1), 21–65 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Banks, T., Susskind, L., Preskin, M.E.: Difficulties for the evolution of pure states unto mixed states. Nucl. Phys. B 244(1), 125–134 (1984)

    Article  ADS  Google Scholar 

  6. D. Bedingham, S.K. Modak, D. Sudarsky.: Relativistic collapse dynamics and black hole information loss. arXiv:1604.06537 (2016)

  7. Bekenstein, J.D.: Black holes and the second law. Lett. Nuovo Cim. 4(15), 737–740 (1972)

    Article  ADS  Google Scholar 

  8. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14(10), 2460 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  10. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  11. Hotta, M., Schützhold, R., Unruh, W.G.: On the partner particles for moving mirror radiation and black hole evaporation. arXiv:1503.06109 (2015)

  12. Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. arXiv:1306.0533 (2013)

  13. Mathur, S.D.: The fuzzball proposal for black holes: an elementary review. Fortsch. Phys. 53, 793–827 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Maudlin, T.: Three measurement problems. Topoi 14(1), 7–15 (1995)

    Article  MathSciNet  Google Scholar 

  15. Modak, S.K., Ortíz, L., Peña, I., Sudarsky, D.: Non-paradoxical loss of information in black hole evaporation in a quantum collapse model. Phys. Rev. D 91, 124009 (2015)

    Article  ADS  Google Scholar 

  16. Okon, E., Sudarsky, D.: Benefits of objective collapse models for cosmology and quantum gravity. Found. Phys. 44, 114–143 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Okon, E., Sudarsky, D.: The black hole information paradox and the collapse of the wave function. Found. Phys. 44, 461–470 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Pearle, P.: Combining stochastic dynamical state vector reduction with spontaneous localization. Phys. Rev. A 39, 2277–2289 (1989)

    Article  ADS  Google Scholar 

  19. Penrose, R.: Time asymmetry and quantum gravity. In: Isham, C.J., Penrose, R., Sciama, D.W. (eds.) Quantum Gravity II. Clarendon Press, New York (1981)

    Google Scholar 

  20. Penrose, R.: The Emperor’s New Mind: concerning Computers, Minds, and the Laws of Physics. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  21. Penrose, R., Floyd, R.M.: Extraction of rotational energy from a black hole. Nat. Phys. Sci. 229(6), 177–179 (1971)

    Article  ADS  Google Scholar 

  22. Perez, A:. Private communication (2016)

  23. Strominger, A.: The ads/cft correspondence. JHEP 77, 106009 (2001)

    MathSciNet  Google Scholar 

  24. Susskind, L.: String theory and the principle of black hole complementarity. Phys. Rev. Lett. 71, 2367–2368 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Susskind, L., Thorlacius, L., Uglum, J.: The stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743–3761 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  27. Unruh, W.G., Wald, R.M.: On evolution laws taking pure states to mixed states in quantum field theory. Phys. Rev. D 52, 2176–2182 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  28. Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago Press, Chicago (1994)

    MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge partial financial support from DGAPA-UNAM Project IG100316. DS was further supported by CONACyT Project 101712.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Okon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okon, E., Sudarsky, D. Black Holes, Information Loss and the Measurement Problem. Found Phys 47, 120–131 (2017). https://doi.org/10.1007/s10701-016-0048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-0048-1

Keywords

Navigation