Skip to main content
Log in

Local Properties of Entanglement and Application to Collapse

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

When a quantum system is macroscopic and becomes entangled with a microscopic one, entanglement is not immediately total, but gradual and local. A study of this locality is the starting point of the present work and shows unexpected and detailed properties in the generation and propagation of entanglement between a measuring apparatus and a microscopic measured system. Of special importance is the propagation of entanglement in nonlinear waves with a finite velocity. When applied to the entanglement between a macroscopic system and its environment, this study yields also new results about the resulting disordered state. Finally, a mechanism of wave function collapse is proposed as an effect of perturbation in the growth of local entanglement between a measuring system and the measured one by waves of entanglement with the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807 (1935). 823, 844, reprinted with English translation in J.A Wheeler and W.H. Zurek, Quantum mechanics and measurement. Princeton University Press, Princeton (1983)

    Article  ADS  Google Scholar 

  2. Schrödinger, E.: Discussion of probability relations in separated systems. Proc. Camb. Philol. Soc. 31, 555 (1935). 32, 446 (1936)

    Article  ADS  Google Scholar 

  3. Haroche, S., Raimond, J.M.: Exploring the Quantum. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  4. Von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). English translation by R.T. Beyer, Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  5. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D., Kupsch, K., Stamatescu, I.O.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2003)

    Book  Google Scholar 

  7. Hugenholtz, N.M.: Physica 23, 481 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Kubo, R.: J. Math. Phys. 4, 174 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Wichmann, E.H., Crichton, J.H.: Phys. Rev. 132, 2788 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  10. Weinberg, S.: The Quantum Theory of Fields I. Cambridge University Press, Cambridge (2011). Chap. 4

    Google Scholar 

  11. Faddeev, L.D., Merkuriev, S.P.: Quantum Scattering Theory for Several Particle Systems. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  12. Brown, L.S.: Quantum Field Theory. Cambridge University Press, Cambridge (1992), Chap. 2

    Book  Google Scholar 

  13. Hörmander, L.: The Analysis of Linear Partial Differential Operators. Springer, Berlin (1985)

    Google Scholar 

  14. Godement, R.: Topologie Algébrique et Théorie des Faisceaux. Hermann, Paris (1981)

    Google Scholar 

  15. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Evolution Problems, I, II. Springer, Berlin (2000)

    Book  Google Scholar 

  16. Balian, R.: From Microphysics to Macrophysics. Springer, Berlin (2006)

    Google Scholar 

  17. Mehta, M.L.: Random Matrices. Elsevier/Academic Press, Amsterdam (2004)

    MATH  Google Scholar 

  18. Omnès, R.: Decoherence and wave function collapse. Found. Phys. 41, 1857 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. d’Espagnat, B.: On Physics and Philosophy. Princeton University Press, Princeton (2006)

    Google Scholar 

  20. Pearle, P.: Reduction of the state vector by a nonlinear Schrödinger equation. Phys. Rev. D 13, 857 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  21. Zurek, W.H.: Quantum Darwinism. Nat. Phys. 5, 181 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Omnès.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omnès, R. Local Properties of Entanglement and Application to Collapse. Found Phys 43, 1339–1368 (2013). https://doi.org/10.1007/s10701-013-9750-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9750-4

Keywords

Navigation