Skip to main content
Log in

On the Concept of Entropy for Quantum Decaying Systems

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The classical concept of entropy was successfully extended to quantum mechanics by the introduction of the density operator formalism. However, further extensions to quantum decaying states have been hampered by conceptual difficulties associated to the particular nature of these states. In this work we address this problem, by (i) pointing out the difficulties that appear when one tries a consistent definition for this entropy, and (ii) building up a plausible formalism for it, which is based on the use of coherent complex states in the context of a path integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \({\mathcal{H}}^{\times}\) is the dual of the Hilbert space \(\mathcal{H}\). We know that these two spaces can be identified via the Riesz theorem, but here it is convenient to distinguish them, as we often distinguish between the spaces of ket vectors (in \(\mathcal{H}\)) and spaces of bra vectors (in \({\mathcal{H}}^{\times}\)).

References

  1. Misra, B., Prigogine, I., Courbage, M.: Proc. Natl. Acad. Sci. USA 76, 4768 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  2. Karpov, E., Ordóñez, G., Petrosky, T., Prigogine, I.: Int. J. Quant. Chem. 98, 69 (2004)

    Article  Google Scholar 

  3. Kobayhashi, T., Shimbori, T.: Phys. Rev. E 63, 056101 (2001)

    Article  ADS  Google Scholar 

  4. Kobayhashi, T.: Int. J. Theor. Phys. 42, 2265–2283 (2003)

    Article  Google Scholar 

  5. Nussenzveig, H.M.: Causality and Dispersions Relations. Academic Press, New York (1972)

    Google Scholar 

  6. Bohm, A.: Quantum Mechanics, Foundations and Applications. Springer, Berlin (2001)

    MATH  Google Scholar 

  7. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Volume IV: Analysis of Operators. Academic Press, New York (1978)

    Google Scholar 

  8. Antoniou, I.E., Gadella, M.: In: Benatti, F., Floreanini, R. (eds.) Irreversibility, Resonances and Rigged Hilbert Spaces, Irreversible Quantum Dynamics. Lecture Notes in Physics, vol. 622, pp. 245–302 (2003)

    Chapter  Google Scholar 

  9. Fonda, L., Ghirardi, G.C., Rimini, A.: Rep. Prog. Phys. 4, 587 (1978)

    Article  ADS  Google Scholar 

  10. Nakanishi, N.: Prog. Theor. Phys. 19, 607 (1958)

    Article  ADS  MATH  Google Scholar 

  11. Gelfand, I.M., Vilenkin, N.Ya.: Generalized Functions, vol. IV. Academic Press, New York (1964)

    Google Scholar 

  12. Maurin, K.: General Eigenfunction Expansions and Unitary representation of Topological Groups. Polish Scientific Publishers, Warsaw (1968)

    Google Scholar 

  13. Roberts, J.E.: Commun. Math. Phys. 3, 98 (1966)

    Article  ADS  MATH  Google Scholar 

  14. Antoine, J.P.: J. Math. Phys. 10, 53 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Melsheimer, O.: J. Math. Phys. 15, 902 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  16. Gadella, M., Gómez, F.: Found. Phys. 32, 815–869 (2002)

    Article  MathSciNet  Google Scholar 

  17. Gamow, G.: Z. Phys. 51, 204–212 (1928)

    Article  ADS  MATH  Google Scholar 

  18. Bohm, A., Gadella, M., Kets, D.: Gamow Vectors and Gelfand Triplets. Lecture Notes in Physics, vol. 348. Springer, Berlin (1989)

    Book  Google Scholar 

  19. Civitarese, O., Gadella, M.: Phys. Rep. 396, 41–113 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  20. Bohm, A.: J. Math. Phys. 22, 2813–2823 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  21. Gadella, M.: J. Math. Phys. 24, 1462–1469 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. de la Madrid, R., Bohm, A., Gadella, M.: Fortschr. Phys. 50, 185–216 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bohm, A., Kaldass, H., Patuleanu, P.: Int. J. Theor. Phys. 38, 115–130 (1999)

    Article  MathSciNet  Google Scholar 

  24. Bohm, A., Wickramasekara, S.: Irreversible Quantum Dynamics. Lect. Notes Phys. 622, 315–326 (2002)

    Article  ADS  Google Scholar 

  25. Koosis, P.: In: Introduction to H p spaces, Cambridge, UK (1980)

    Google Scholar 

  26. Bohm, A., Scurrek, R., Wickramasekara, S.: Rev. Mex. Fis. 45, 16–20 (1999)

    Google Scholar 

  27. Bohm, A., Kaldass, H., Wickramasekara, S.: Fortschr. Phys. 51, 569–603 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bohm, A., Kaldass, H., Wickramasekara, S.: Fortschr. Phys. 51, 604–634 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bohm, A., Kielanowski, P., Wickramasekara, S.: Ann. Phys. 321, 2299–2317 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Bohm, A., Gadella, M., Kielanowski, P.: SIGMA 7, 086 (2011)

    MathSciNet  Google Scholar 

  31. Friedrichs, K.O.: Commun. Pure Appl. Math. 1, 361 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gadella, M., Pronko, G.P.: Fortschr. Phys. 59, 795 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Exner, P.: Open Quantum Systems and Feynmann Integrals. Reidel, Dordrecht (1985)

    Book  Google Scholar 

  34. Reed, M., Simon, B.: Functional Analysis. Academic Press, New York (1972)

    MATH  Google Scholar 

  35. Gadella, M., de la Madrid, R.: Int. J. Theor. Phys. 38, 93–113 (1999)

    Article  MATH  Google Scholar 

  36. Antoniou, I., Prigogine, I.: Physica A 192, 443 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  37. Marsden, J.E.: Basic Complex Analysis. Freeman, San Francisco (1973)

    MATH  Google Scholar 

  38. Antoniou, I.E., Gadella, M., Karpov, E., Prigogine, I., Pronko, G.: Chaos Solitons Fractals 12, 2757–2775 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Antoniou, I., Melnikov, Y.: Chaos Solitons Fractals 12, 2603 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Gadella, M., Laura, R.: Gamow Dyads and Expectation Values. Int. J. Quant. Chem. 81, 307–320 (2001)

    Article  Google Scholar 

  41. ter Haar, D.: Lectures on Selected Topics in Statistical Mechanics. Pergamon Press, Oxford (1977)

    Google Scholar 

  42. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  43. Gazeau, J.-P.: Coherent States in Quantum Physics. Wiley-VCH, Berlin (2009)

    Book  Google Scholar 

  44. Civitarese, O., Gadella, M.: (2013). To be published

  45. Gelfand, I.M., Shilov, G.E.: Generalized Functions vol. 1. Academic Press, New York (1964)

    Google Scholar 

  46. Pietsch, A.: Nuclear Locally Convex Spaces. Akademie-Verlag, Berlin (1972)

    Book  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the CONICET of Argentina (PIP 0740), and the ANPCYT (Argentina), and the Spanish Government Grants No. PR2011-0343, No. FPA2008-04772-E, and No. MTM2009-10751.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Civitarese.

Appendix

Appendix

In the present Appendix, we shall sketch some mathematical properties related to objects that have been introduced along the present paper.

To begin with, let us define the space \(C^{\infty}_{b}({\mathbb{R}})\) as the vector space of all functions \(f(x):{\mathbb{R}}\longmapsto{\mathbb{C}}\) having the following properties: i.) They are continuously differentiable at all orders and ii.) they have compact support, i.e., they vanish outside a finite interval of the real line \({\mathbb{R}}\).

This space has the following properties:

Let us consider the Fourier transform \(\mathcal{F}\). Then, \(\mathcal{F}\) is an one to one onto mapping

$$ \mathcal{F}:C^\infty_b({\mathbb{R}})\longmapsto Z , $$
(75)

where Z are entire analytic functions of exponential type [45]. Let us call \(\mathcal{Z}\) the vector space of restrictions of functions of Z on the positive semi-axis \({\mathbb{R}}^{+}\equiv [0,\infty)\). Some properties of the spaces \(\mathcal{Z}\) are the following:

(i) Functions in Z are in \(L^{2}(\mathbb{R})\).

(ii) \(\mathcal{Z}\) is dense in \(L^{2}({\mathbb{R}}^{+})\) with respect to the topology of the latter, so that

$$ \mathcal{Z}\subset L^2\bigl({\mathbb{R}}^+\bigr)\subset \mathcal{Z}^\times $$
(76)

are well defined Gelfand triplets or RHS. This can be proven as done for similar triplets of Hardy functions [21].

(iii) For any \(t\in\mathbb{R}\) and any \(f(E)\in \mathcal{Z}\) we have that

$$ e^{itE}f(E)\in\mathcal{Z} . $$
(77)

Then, take \(F\in\mathcal{Z}^{\times}\) and consider the duality formula

$$ \langle e^{itE}f(E)|F \rangle= \langle f(E)|e^{-itE}F \rangle . $$
(78)

This means that for any fixed \(t\in\mathbb{R}\) and any \(F\in\mathcal{Z}^{\times}\), \(e^{-itE}F\in \mathcal{Z}^{\times}\).

(iv) The total Hamiltonian H for the Friedrichs model has non-degenerate absolutely continuous spectrum σ(H)≡[0,∞). Then, there is a unitary operator \(U: L^{2}({\mathbb{R}}^{+})\oplus{\mathbb{C}}\longmapsto L^{2}({\mathbb{R}}^{+})\) such that UHU −1 is the multiplication operator on \(L^{2}({\mathbb{R}}^{+})\), i.e., UHU −1 f(E)=Ef(E), for any \(f(E)\in L^{2}({\mathbb{R}}^{+})\) such that \(Ef(E)\in L^{2}({\mathbb{R}}^{+})\) [34]. Then, if \(\varPhi:=U^{-1}\mathcal{Z}\), we have a new Gelfand triplet [18, 19]:

$$ \varPhi\subset L^2\bigl({\mathbb{R}}^+\bigr)\oplus{ \mathbb{C}} \subset \varPhi^\times . $$
(79)

Any test vector ϕ in Φ can be written as ϕ=U −1 ϕ(E) for any function \(\phi(E)\in\mathcal{Z}\).

The Gamow vectors |ψ D〉 and |ψ G〉 can be defined as functionals on Φ ×, as follows:

$$ \langle \phi|\psi^D \rangle= \phi^*(z_R) ;\quad \langle \phi|\psi^G \rangle= \phi^*\bigl(z^*_R\bigr) ; \quad \forall \phi\in\varPhi , $$
(80)

where ϕ (z R ) and \(\phi^{*}(z^{*}_{R})\) are the values on z R and \(z^{*}_{R}\) respectively of the entire function \(\phi(E)\in\mathcal{Z}\) with =ϕ(E) and the star denotes complex conjugation. Formula (78) and an analysis as given in [18, 19] shows that

$$ e^{-itH}|\psi^D\rangle =e^{-itE_R} e^{-t\varGamma/2} |\psi^D\rangle ;\quad\quad e^{-itH}| \psi^G\rangle =e^{-itE_R} e^{t\varGamma/2} |\psi^G \rangle , \quad t\in\mathbb{R} . $$
(81)

(v) Let us consider the following Gelfand triplet:

$$ \varPhi\otimes \varPhi\subset {\mathcal{H}}\otimes {\mathcal{H}} \subset \varPhi^\times \otimes {^\times\varPhi} , $$
(82)

where \({\mathcal{H}} =L^{2}({\mathbb{R}}^{+})\oplus{\mathbb{C}}\), Φ × (× Φ) is the space of all continuous antilinear (linear) functionals on Φ. Then, the dyad

$$ |\psi^D\rangle \langle\psi^D|\in \varPhi^\times \otimes {^\times\varPhi} . $$
(83)

satisfies (42) for all values of \(t\in{\mathbb{R}}\).

This result is obvious. In fact, if ϕφΦΦ, we have for the Liouville operator L=HIIH:

$$ \langle \phi\otimes\varphi | e^{-itL} |\psi^D \rangle \langle\psi^D| \rangle= e^{-t\varGamma} \langle \phi\otimes\varphi| |\psi^D \rangle \langle \psi^D| \rangle , \quad t\in{\mathbb{R}} . $$
(84)

Since the space spanned by vectors in factorizable form ϕφ is dense in ΦΦ [46], we have for all values of time:

$$ e^{-itL}|\psi^D\rangle \langle \psi^D|=e^{-t\varGamma} |\psi^D \rangle \langle \psi^D| ,\quad\quad e^{-itL}|\psi^G \rangle \langle\psi^G|=e^{t\varGamma} |\psi^G \rangle \langle\psi^G| . $$
(85)

We see that ρ=|ψ D〉〈ψ D| decays exponentially to the future and ρ=|ψ G〉〈ψ G| decays exponentially to the past for all values of time. Note that the latter coincides with the Prigogine’s entropy operator (51). The price that we had to pay for this picture is to give up the formulation based in the Hardy spaces (compare to the results given in [40]) and therefore the standard presentation of the TAQM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Civitarese, O., Gadella, M. On the Concept of Entropy for Quantum Decaying Systems. Found Phys 43, 1275–1294 (2013). https://doi.org/10.1007/s10701-013-9746-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9746-0

Keywords

Navigation