Skip to main content
Log in

The Effect of Spontaneous Collapses on Neutrino Oscillations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We compute the effect of collapse models on neutrino oscillations. The effect of the collapse is to modify the evolution of the spatial part of the wave function and we will show that this indirectly amounts to a change on the flavor components. For the analysis we use the mass proportional CSL model, and perform the calculation to second order perturbation theory. As we will show, the CSL effect is very small—mainly due to the very small mass of neutrinos—and practically undetectable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Equation (7) differs from those one typically finds in the literature only because the latter are written in the ultra-relativistic approximation \(E=\sqrt{\mathbf{p}^{2}c^{2}+m^{2}c^{4}}\simeq pc (1+\frac{m^{2}c^{4}}{2p^{2}c^{2}} )\).

  2. In the following, we will consider decoherence effects only on electronic and muonic neutrinos.

  3. A proof of this can be found in Sect. 2.3 of [47]. There, the proof is worked out for the Dirac equation coupled with an electromagnetic field. This is the same case as ours, if one sets A(x)=0 and \(eA_{0} (x )=-\hbar\sqrt{\gamma_{m}}w (x )\).

  4. Here and in the following we use the notation of [47].

  5. As well know in Quantum Field Theory, the reason why we used :N I (t): in place of N I (t) is that, with this prescription, we can remove all divergent contributions coming from tadpole diagrams. This type of divergences can be absorbed through a renormalization procedure, without giving any physically observable consequence [51, 52].

  6. In general, spontaneous collapses and decoherence are described by similar master equations.

References

  1. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  2. Adler, S.L., Bassi, A.: Science 325, 275 (2009)

    Article  Google Scholar 

  3. Weinberg, S.: (2011) arXiv:1109.6462v3 [quant-ph]

  4. Leggett, A.J.: J. Phys. A 40, 3141 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., Zeilinger, A.: Nature 401, 680 (1999)

    Article  ADS  Google Scholar 

  6. Hackermüller, L., Hornberger, K., Brezger, B., Zeilinger, A., Arndt, M.: Nature 427, 711 (2004)

    Article  ADS  Google Scholar 

  7. Gerlich, S., Hackermller, L., Hornberger, K., Stibor, A., Ulbricht, H., Gring, M., Goldfarb, F., Savas, T., Müri, M., Mayor, M., Arndt, M.: Nat. Phys. 3, 711 (2007)

    Article  Google Scholar 

  8. Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P.J., Tüxen, J., Mayor, M., Arndt, M.: Nat. Commun. 2, 263 (2011)

    Article  ADS  Google Scholar 

  9. Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Phys. Rev. Lett. 91, 130401 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  10. Romero-Isart, O.: Phys. Rev. A 84, 052121 (2011)

    Article  ADS  Google Scholar 

  11. Ghirardi, G.C., Grassi, R., Benatti, F.: Found. Phys. 25, 5 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Fu, Q.: Phys. Rev. A 56, 1806 (1997)

    Article  ADS  Google Scholar 

  13. Ghirardi, G.C., Pearle, P., Rimini, A.: Phys. Rev. A 42, 78 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  14. Ghirardi, G.C., Rimini, A., Weber, T.: Phys. Rev. D 34, 470 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Adler, S.L.: J. Phys. A 40, 2935 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Bassi, A., Ghirardi, G.C.: Phys. Rep. 379, 257 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Adler, S.L.: Quantum Theory as an Emergent Phenomenon. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  18. Pearle, P.: Phys. Rev. D 13, 857 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  19. Pearle, P.: Phys. Rev. A 39, 2277 (1989)

    Article  ADS  Google Scholar 

  20. Pearle, P.: In: Breuer, H.-P., Petruccione, F. (eds.): Lecture Notes in Physics, vol. 526. Springer, Berlin (1999)

    Google Scholar 

  21. Diósi, L.: J. Phys. A, Math. Gen. 21, 2885 (1988)

    Article  ADS  MATH  Google Scholar 

  22. Diósi, L.: Phys. Lett. A 129, 419 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  23. Beuthe, M.: Phys. Rep. 375, 105 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  24. Gonzalez-Garcia, M.C., Nir, Y.: Rev. Mod. Phys. 75, 345 (2003)

    Article  ADS  Google Scholar 

  25. Giunti, C., Kim, C.W.: Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press, Oxford (2007)

    Book  Google Scholar 

  26. Gonzalez-Garcia, M.C., Maltoni, M.: Phys. Rep. 460, 1 (2008)

    Article  ADS  Google Scholar 

  27. Christian, J.: Phys. Rev. Lett. 95, 160403 (2005)

    Article  ADS  Google Scholar 

  28. Penrose, R.: Gen. Relativ. Gravit. 28, 581 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Penrose, R.: In: Fokas, A., et al. (eds.) Mathematical Physics 2000, Imperial College, London (2000)

    Google Scholar 

  30. Diósi, L.: Phys. Rev. A 40, 1165 (1989)

    Article  ADS  Google Scholar 

  31. Ghirardi, G.C., Grassi, R., Rimini, A.: Phys. Rev. A 42, 1057 (1990)

    Article  ADS  Google Scholar 

  32. Wolfenstein, L.: Phys. Rev. D 17, 2369 (1978)

    Article  ADS  Google Scholar 

  33. Mikheyev, S.P., Smirnov, A.Yu.: Sov. J. Nucl. Phys. 42, 913 (1985)

    Google Scholar 

  34. Benatti, F., Floreanini, R.: Phys. Rev. D 71, 013003 (2005)

    Article  ADS  Google Scholar 

  35. Lisi, E., Marrone, A., Montanino, D.: Phys. Rev. Lett. 85, 1166 (2000)

    Article  ADS  Google Scholar 

  36. Fogli, G.L., Lisi, E., Marrone, A., Montanino, D.: Phys. Rev. D 67, 093006 (2003)

    Article  ADS  Google Scholar 

  37. Aseev, V.N., Belesev, A.I., Berlev, A.I., Geraskin, E.V., Golubev, A.A., Likhovid, N.A., Lobashev, V.M., Nozik, A.A., Pantuev, V.S., Parfenov, V.I., Skasyrskaya, A.K., Tkachov, F.V., Zadorozhny, S.V.: Phys. Rev. D 84, 112003 (2011)

    Article  ADS  Google Scholar 

  38. Nakamura, K., et al.: J. Phys. G, Nucl. Part. Phys. 37, 075021 (2010)

    Article  ADS  Google Scholar 

  39. Diósi, L.: Braz. J. Phys. 35, 260 (2005)

    Article  ADS  Google Scholar 

  40. Stodolsky, L.: Phys. Rev. D 36, 2273 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  41. Marciano, W.J., Parsa, Z.: J. Phys. G 29, 2629 (2003)

    Article  ADS  Google Scholar 

  42. Flowers, E.G., Sutherland, P.G.: Astrophys. J. 208, L19 (1976)

    Article  ADS  Google Scholar 

  43. Fogli, G.L., et al.: Phys. Rev. D 76, 033006 (2007)

    Article  ADS  Google Scholar 

  44. McKeown, R.D., Vogel, P.: Phys. Rep. 394, 315–356 (2004). And references therein

    Article  ADS  Google Scholar 

  45. Adler, S.L., Bassi, A.: J. Phys. A 40, 15083 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Donadi, S., Bassi, A., Curceanu, C., Di Domenico, A., Hiesmayr, B.C.: Found. Phys. 43, 813 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Greiner, W.: Relativistic Quantum Mechanics—Wave Equations. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  48. Sakurai, J.J., Tuan, S.F.: Modern Quantum Mechanics. Addison-Wesley, Reading (1994)

    Google Scholar 

  49. Tumulka, R.: J. Stat. Phys. 125, 821 (2006)

    Article  ADS  Google Scholar 

  50. Bedingham, D.J.: Found. Phys. 41, 686 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Greiner, W.: Quantum Electrodynamics 3Ed. Springer, Berlin (2003)

    Book  Google Scholar 

  52. Greiner, W., Reinhardt, J.: Field Quantization. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  53. Bertlmann, R.A., Durstberger, K., Hiesmayr, B.C.: Phys. Rev. A 68, 012111 (2003)

    Article  ADS  Google Scholar 

  54. Adler, S.L.: Phys. Rev. D 62, 117901 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank S.L. Adler, M. Bahrami, A. Di Domenico and B. Hiesmayr for many useful and enjoyable conversations on this topic. They also acknowledge partial financial support from NANOQUESTFIT, INFN, the COST Action MP1006 “Fundamental problems in Quantum Physics” and the John Templeton Foundation project “Experimental and theoretical exploration of fundamental limits of quantum mechanics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Donadi.

Appendices

Appendix A: Dimensional Estimate of the Decay Rate

Here we wish to discuss about the possibility of estimate the predictions of the CSL model in neutrino oscillations by using dimensional analysis. Collapse models, as discussed in Sect. 4, are described by the same type of master equations as open quantum systems (which experience decoherence due to interactions with an external environment). In such a case it is well known that the effect of decoherence is to suppress exponentially flavour oscillations. So it does not come as a surprise that for collapse models the effect is the same. Then one could try to guess the decay rate with dimensional analysis, using the relevant constants and parameters of the model. First of all is reasonable to suppose that the effect is proportional to the strength of the noise γ. Moreover, since we are using the mass proportional CSL model, for which γ is replaced by \(\gamma_{m_{j}}\equiv\gamma (\frac{m_{j}}{m_{0}} )^{2}\), one expects also a factor \(m_{0}^{2}\) in the denominator. Because [γ]=cm3s−1, and the decay rate must have dimension s−1, we need to introduce terms with dimension cm−3. Since the parameter r C has the dimension of a length, then it is natural to introduce an \(r_{C}^{3}\) in the denominator. Finally, we need to introduce terms with the dimension of a squared mass. The simplest choices are:

$$ \xi_{jk}^{(1)}\sim\frac{\gamma}{r_{C}^{3}m_{0}^{2}} (m_{j}-m_{k} )^{2}\quad\text{or}\quad\xi_{jk}^{(2)} \sim\frac{\gamma}{r_{C}^{3}m_{0}^{2}} \bigl(m_{j}^{2}-m_{k}^{2} \bigr). $$
(71)

Both these formulas are different compared to the correct one given by Eq. (8). If we substitute the values of the constants and the parameters and we consider, for example, the case of the cosmological neutrinos, we get:

$$\begin{aligned} \xi_{jk}^{(1)}t_{cosm} \sim&\frac{\gamma}{r_{C}^{3}m_{0}^{2}} (m_{j}-m_{k} )^{2}t_{cosm} \sim10^{-17} \end{aligned}$$
(72)
$$\begin{aligned} \xi_{jk}^{(2)}t_{cosm} \sim&\frac{\gamma}{r_{C}^{3}m_{0}^{2}} \bigl(m_{j}^{2}-m_{k}^{2} \bigr)t_{cosm}\sim10^{-11} \end{aligned}$$
(73)

The formula derived with dimensional analysis shows that the CSL effect on neutrino oscillations is very small, practically undetectable. However, it differs by many orders of magnitude from the exact (perturbative) result. We performed the lengthy calculation present here in order to arrive at a fully trustable result. As we have seen here above, dimensional analysis does not allow to reach a firm conclusion.

Appendix B: Approximation in the Calculation of \(I_{j}^{ (2 )}\)

In this appendix we justify the approximation we used in order to derive Eq. (62) from Eq. (61). This amounts to proving that:

$$ \frac{1}{\hbar^{3}}\int d\mathbf{p}\frac{1}{E_{p}^{ (j )}}e^{-\frac{ (\mathbf{p}-\mathbf{p}_{i} )^{2}r_{C}^{2}}{\hbar^{2}}}\simeq \frac{1}{E_{i}^{ (j )}}\frac{\pi^{3/2}}{r_{C}^{3}} $$
(74)

To see this, we can rewrite the integral in polar coordinates and integrate over the angular variables:

$$ \frac{1}{\hbar^{3}}\int d\mathbf{p}\frac{1}{E_{p}^{ (j )}}e^{-\frac{ (\mathbf{p}-\mathbf{p}_{i} )^{2}r_{C}^{2}}{\hbar^{2}}}= \frac{2\pi}{\hbar^{3}}\frac{\hbar^{2}}{2p_{i}r_{C}^{2}}\int_{-\infty}^{+\infty}dp \frac{p}{\sqrt{p^{2}c^{2}+m_{j}^{2}c^{4}}}e^{-\frac{ (p-p_{i} )^{2}r_{C}^{2}}{\hbar^{2}}} $$
(75)

Let us introduce the dimensionless variable \(s=\frac{ (p-p_{i} )r_{C}}{\hbar}\):

$$ \frac{1}{\hbar^{3}}\int d\mathbf{p}\frac{1}{E_{p}^{ (j )}}e^{-\frac{ (\mathbf{p}-\mathbf{p}_{i} )^{2}r_{C}^{2}}{\hbar^{2}}}= \frac{\pi}{p_{i}r_{C}r_{c}^{3}}\int_{-\infty}^{+\infty}ds \frac{ (s+p_{i}\frac{r_{C}}{\hbar} )}{\sqrt{ (s+\frac{r_{C}}{\hbar}p_{i} )^{2}c^{2}+\frac{r_{C}^{2}}{\hbar^{2}}m_{j}^{2}c^{4}}}e^{-s^{2}} $$
(76)

If p i cħc/r C ∼10 eV (the typical range of momenta of neutrinos is between 103 eV and 1019 eV) we can disregard s both in the numerator and denominator, obtaining:

$$ \frac{1}{\hbar^{3}}\int d\mathbf{p}\frac{1}{E_{p}^{ (j )}}e^{-\frac{ (\mathbf{p}-\mathbf{p}_{i} )^{2}r_{C}^{2}}{\hbar^{2}}} \simeq \frac{\pi}{r_{C}^{3}E_{i}^{ (j )}}\int_{-\infty}^{+\infty}dse^{-s^{2}} = \frac{\pi^{3/2}}{r_{C}^{3}E_{i}^{ (j )}}, $$
(77)

which is the desired result.

Appendix C: Approximation in the Calculation of \(I_{jk}^{ (1 )}\)

Here we justify the approximation we used to pass from Eq. (58) to Eq. (59). We start with Eq. (58):

$$\begin{aligned} I_{jk}^{ (1 )} (\mathbf{p}_{i},s_{i};t ) = & \sum_{s_{f}}\int d\mathbf{p}_{f} \sqrt{\gamma_{m_{j}}\gamma_{m_{k}}}\frac{m_{j}m_{k}c^{4}}{\sqrt{E_{i}^{ (j )}E_{f}^{ (j )}E_{i}^{ (k )}E_{f}^{ (k )}}} \\ &{}\times\overline{u} \bigl(p_{f}^{ (j )},s_{f}\bigr)u \bigl(p_{i}^{ (j )},s_{i}\bigr)\overline{u} \bigl(p_{i}^{ (k )},s_{i}\bigr)u\bigl(p_{f}^{ (k )},s_{f} \bigr) \\ &{} \times\frac{1-e^{\frac{i}{\hbar} (E_{f}^{ (k )}-E_{i}^{ (k )}-E_{f}^{ (j )}+E_{i}^{ (j )} )t}}{\frac{i}{\hbar}(E_{f}^{ (j )}-E_{i}^{ (j )}-E_{f}^{ (k )}+E_{i}^{ (k )})}\frac{1}{ (2\pi\hbar )^{3}}e^{-\frac{ (\mathbf{p}_{f}-\mathbf{p}_{i} )^{2}r_{C}^{2}}{\hbar^{2}}} \end{aligned}$$
(78)

where:

$$ \begin{aligned} &E_{f}^{ (j )}=\sqrt{\mathbf{p}_{f}^{2}c^{2}+m_{j}^{2}c^{4}},\quad u (p,s )=\frac{p^{\mu}\gamma_{\mu}c+mc^{2}}{\sqrt{2mc^{2} (E_{p}+mc^{2} )}}u (0,s )\quad\text{and}\\ &\sqrt{\gamma_{m_{j}}}=\sqrt{\gamma}\frac{m_{j}}{m_{0}} \end{aligned} $$
(79)

The first part of the integrand:

$$ \frac{m_{j}m_{k}c^{4}}{\sqrt{E_{i}^{ (j )}E_{f}^{ (j )}E_{i}^{ (k )}E_{f}^{ (k )}}}\sum_{s_{f}}\overline{u} \bigl(p_{f}^{ (j )},s_{f}\bigr)u \bigl(p_{i}^{ (j )},s_{i}\bigr)\overline{u} \bigl(p_{i}^{ (k )},s_{i}\bigr)u\bigl(p_{f}^{ (k )},s_{f} \bigr) $$
(80)

is a composition of polynomial functions of \({\bf p}_{f}\), and we can safely assume that it does not change too much, within the range where the Gaussian function is appreciably different from zero. Therefore we can then take \({\bf p}_{f} = {\bf p}_{i}\); by using also the relation:

$$ \overline{u}\bigl(p_{i}^{ (1 )},s_{f}\bigr)u \bigl(p_{i}^{ (1 )},s_{i}\bigr)=\delta_{s_{f},s_{i}}, $$
(81)

Eq. (78) becomes:

$$\begin{aligned} I_{jk}^{ (1 )} (\mathbf{p}_{i},s_{i};t ) \simeq{}& \sqrt{\gamma_{m_{j}}\gamma_{m_{k}}}\frac{m_{j}m_{k}c^{4}}{E_{i}^{ (j )}E_{i}^{ (k )}} \frac{1}{ (2\pi\hbar )^{3}} \\ &{}\times\underset{\equiv I}{\underbrace{\int d\mathbf{p}_{f} \frac{1-e^{\frac{i}{\hbar}(E_{f}^{ (k )}-E_{i}^{ (k )}-E_{f}^{ (j )}+E_{i}^{ (j )})t}}{\frac{i}{\hbar}(E_{f}^{ (j )}-E_{i}^{ (j )}-E_{f}^{ (k )}+E_{i}^{ (k )})}e^{-\frac{(\mathbf{p}_{f}-\mathbf{p}_{i})^{2}r_{C}^{2}}{\hbar^{2}}}}} \end{aligned}$$
(82)

Now we have to focus our attention on the integral I, which contains an oscillating term that needs special care. As before, we write the integral in polar coordinates and perform the integration over the angular variables; moreover, we introduce once again the a-dimensional variable \(s=\frac{ (p_{f}-p_{i} )r_{C}}{\hbar}\). We have:

$$ I=\pi\frac{\hbar^{3}}{p_{i}r_{C}^{3}}t\int_{-\infty}^{+\infty}ds \biggl(\frac{\hbar}{r_{C}}s+p_{i} \biggr)\frac{e^{ig (s )}-1}{ig (s )}e^{-s^{2}}, $$
(83)

where we have defined:

$$\begin{aligned} g (s ) \equiv & \frac{1}{\hbar}\bigl(E_{f}^{ (k )}-E_{i}^{ (k )}-E_{f}^{ (j )}+E_{i}^{ (j )} \bigr)t \\ = & \frac{ct}{r_{C}} \bigl(\sqrt{ (s+y )^{2}+a_{k}}- \sqrt{ (s+y )^{2}+a_{j}}-\sqrt{y^{2}+a_{k}}+ \sqrt{y^{2}+a_{j}} \bigr), \end{aligned}$$
(84)

with

$$ a_{j}\equiv\frac{r_{C}^{2}}{\hbar^{2}}m_{j}^{2}c^{2}= \bigl(10^{-2}~\text{eV}^{-2} \bigr)m_{j}^{2}c^{4} \text{e} y\equiv\frac{r_{C}}{\hbar}p_{i}= \bigl(10^{-1}~\text{eV}^{-1} \bigr)p_{i}c $$
(85)

Our goal is to show that g(s) does not vary appreciably, within the range where the Gaussian term is significantly different from zero, and can be approximated with g(0)=0; in this way, the integral can be computed exactly. This kind of approximation is not obvious because the factor ct/r C in front of Eq. (84) can be very big.

In the ultra-relativistic limit, we approximate the particle’s velocity with the speed of light. In this limit, y 2a j ,a k , and so we can expand the square roots in g(s) using the Taylor series \(\sqrt{x+\epsilon}=\sqrt{x}+\frac{\epsilon}{2\sqrt{x}}\) and we get:

$$ g (s )\simeq\frac{ct}{r_{C}} (a_{j}-a_{k} ) \frac{s}{ (s+y )y}=\frac{ct}{r_{C}}\frac{ (a_{j}-a_{k} )}{ (y+\frac{y^{2}}{s} )}. $$
(86)

In order for g(s) to remain small within the interval where the Gaussian term of Eq. (83) is appreciably different from zero, we need:

$$ \biggl(y+\frac{y^{2}}{s} \biggr) \gg \frac{ct}{r_{C}} (a_{j}-a_{k} ) $$
(87)

In all physically interesting situations, the term on the right hand side of Eq. (87) is bigger than 1; moreover s is of the order of unity, because of the Gaussian in Eq. (83). Inequality (87) is verified if the following condition is true:

$$ y \gg \sqrt{\frac{ct}{r_{C}} (a_{j}-a_{k} )}. $$
(88)

Typically, cosmogenic neutrinos have energies bigger than 1018 eV and travel distances of at most 109 light-years [27]. This means that, in the worst case, ct/r C ∼1032 while (a j a k )=(10−2 eV−2) \((m_{j}^{2}c^{4}-m_{k}^{2}c^{4})\simeq(10^{-2}~\text{eV}^{-2})(2\times10^{-3}~\text{eV}^{2})=10^{-5}\). So we must have y≫1014, that means p i c=y/(10−1 eV−1)≫1015 eV, which is satisfied.

For atmospheric neutrinos, ct/r C is in the range 1011−1014 while the range of energies is between 10−1 GeV and 104 GeV [25]. This means that, even in the worse case, the condition to check is y≫105, which means p i c=y/(10−1 eV−1)≫106 eV. This is also satisfied.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donadi, S., Bassi, A., Ferialdi, L. et al. The Effect of Spontaneous Collapses on Neutrino Oscillations. Found Phys 43, 1066–1089 (2013). https://doi.org/10.1007/s10701-013-9732-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9732-6

Keywords

Navigation