Skip to main content
Log in

Non-exponential Decay in Quantum Field Theory and in Quantum Mechanics: The Case of Two (or More) Decay Channels

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We study the deviations from the exponential decay law, both in quantum field theory (QFT) and quantum mechanics (QM), for an unstable particle which can decay in (at least) two decay channels. After a review of general properties of non-exponential decay in QFT and QM, we evaluate in both cases the decay probability that the unstable particle decays in a given channel in the time interval between t and t+dt. An important quantity is the ratio of the probability of decay into the first and the second channel: this ratio is constant in the Breit-Wigner limit (in which the decay law is exponential) and equals the quantity Γ 1/Γ 2, where Γ 1 and Γ 2 are the respective tree-level decay widths. However, in the full treatment (both for QFT and QM) it is an oscillating function around the mean value Γ 1/Γ 2 and the deviations from this mean value can be sizable. Technically, we study the decay properties in QFT in the context of a superrenormalizable Lagrangian with scalar particles and in QM in the context of Lee Hamiltonians, which deliver formally analogous expressions to the QFT case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Alternatively, one could introduce a counterterm and work with M 0 as the physical mass, see details in Appendix A.

  2. Here ‘full’ result means that the resummed 1-loop approximation has been performed and that the full functional form of the spectral function d S (x) is kept in the evaluation of the temporal behavior.

  3. This is true for the nonrelativistic approximation, but is not true for the relativistic one: in fact, the latter is peaked also for x=−M.

References

  1. Fonda, L., Ghirardi, G.C., Rimini, A.: Rep. Prog. Phys. 41, 587 (1978)

    Article  ADS  Google Scholar 

  2. Misra, B., Sudarshan, E.C.G.: J. Math. Phys. 18, 756 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  3. Khalfin, L.A.: Zh. Èksp. Teor. Fiz. 33, 1371 (1957). Engl. trans. Sov. Phys. JETP, 6, 1053

    Google Scholar 

  4. Zheng, H., Zhu, S.Y., Zubairy, M.S.: Phys. Rev. Lett. 101, 200404 (2008)

    Article  ADS  Google Scholar 

  5. Facchi, P., Nakazato, H., Pascazio, S.: Phys. Rev. Lett. 86, 2699–2703 (2001)

    Article  ADS  Google Scholar 

  6. Facchi, P., Pascazio, S.: Fundamental aspects of quantum physics. In: Accardi, L., Tasaki, S. (eds.) Quantum Probability and White Noise Analysis, vol. 17, p. 222 (2003). arXiv:quant-ph/0202127

    Google Scholar 

  7. Facchi, P., Pascazio, S.: Phys. Lett. A 241, 139 (1998). arXiv:quant-ph/9905017

    Article  ADS  Google Scholar 

  8. Nakazato, H., Namiki, M., Pascazio, S.: Int. J. Mod. Phys. A 10(03), 247–295 (1996). arXiv:quant-ph/9509016

    Article  ADS  Google Scholar 

  9. Balachandran, A.P., Roy, S.M.: Phys. Rev. Lett. 84, 4019 (2000). arXiv:quant-ph/9909056

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Jittoh, T., Matsumoto, S., Sato, J., Sato, Y., Takeda, K.: Phys. Rev. A 71, 012109 (2005). quant-ph/0408149

    Article  ADS  Google Scholar 

  11. Aglietti, U.G., Santini, P.M.: arXiv:1010.5926 [quant-ph]

  12. Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Phys. Rev. A 41, 2295 (1990)

    Article  ADS  Google Scholar 

  13. Wilkinson, S.R., Bharucha, C.F., Fischer, M.C., Madison, K.W., Morrow, P.R., Niu, Q., Sundaram, B., Raizen, M.G.: Nature 387, 575 (1997)

    Article  ADS  Google Scholar 

  14. Fischer, M.C., Gutiérrez-Medina, B., Raizen, M.G.: Phys. Rev. Lett. 87, 040402 (2001)

    Article  ADS  Google Scholar 

  15. Facchi, P., Pascazio, S.: Phys. Lett. A 241, 139–144 (1998). quant-ph/9905017

    Article  ADS  Google Scholar 

  16. Giacosa, F., Pagliara, G.: arXiv:1110.1669 [nucl-th]

  17. Giacosa, F., Pagliara, G.: Proceedings of the “50th International Winter Meeting on Nuclear Physics”. 23–27 January 2012, Bormio, Italy (2012, to appear). arXiv:1204.1896 [nucl-th]

  18. Lee, T.D.: Phys. Rev. 95, 1329–1334 (1954)

    Article  ADS  MATH  Google Scholar 

  19. Chiu, C.B., Sudarshan, E.C.G., Bhamathi, G.: Phys. Rev. D 46, 3508 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  20. Giacosa, F., Pagliara, G.: Mod. Phys. Lett. A 26, 2247–2259 (2011). arXiv:1005.4817 [hep-ph]

    Article  ADS  Google Scholar 

  21. Pagliara, G., Giacosa, F.: Acta Phys. Polon. Supp. 4 (2011). arXiv:1108.2782 [hep-ph]

  22. Giacosa, F., Pagliara, G.: Phys. Rev. C 76, 065204 (2007). arXiv:0707.3594 [hep-ph]

    Article  ADS  Google Scholar 

  23. Achasov, N.N., Kiselev, A.V.: Phys. Rev. D 70, 111901 (2004). arXiv:hep-ph/0405128

    Article  ADS  Google Scholar 

  24. Nakazato, H., Pascazio, S.: Mod. Phys. Lett. A 10, 3103 (1995)

    Article  ADS  Google Scholar 

  25. Amsler, C., Tornqvist, N.A.: Phys. Rep. 389, 61 (2004)

    Article  ADS  Google Scholar 

  26. Klempt, E., Zaitsev, A.: Phys. Rep. 454, 1 (2007)

    Article  ADS  Google Scholar 

  27. Alvarez-Estrada, R.F., Sanchez-Gomez, J.L.: Phys. Lett. A 253, 252–258 (1999)

    Article  ADS  Google Scholar 

  28. Alvarez-Estrada, R.F., Sanchez-Gomez, J.L.: quant-ph/9807084

  29. Bernardini, C., Maiani, L., Testa, M.: Phys. Rev. Lett. 71, 2687–2690 (1993)

    Article  ADS  Google Scholar 

  30. Maiani, L., Testa, M.: Ann. Phys. 263, 353 (1998). arXiv:hep-th/9709110

    Article  ADS  Google Scholar 

  31. Witten, E.: Nucl. Phys. B 160, 57 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  32. ’t Hooft, G.: Nucl. Phys. B 72, 461 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  33. Giacosa, F.: Phys. Rev. D 80, 074028 (2009). arXiv:0903.4481 [hep-ph]

    Article  ADS  Google Scholar 

  34. Kamefuchi, S., O’Raifeartaigh, L., Salam, A.: Nucl. Phys. 28, 529 (1961)

    MathSciNet  Google Scholar 

  35. Giacosa, F., Pagliara, G.: Nucl. Phys. A 812, 125 (2008). arXiv:0804.1572 [hep-ph]

    Article  ADS  Google Scholar 

  36. Giacosa, F., Pagliara, G.: PoS Confinement 8, 163 (2008). arXiv:0812.3357 [hep-ph]

    Google Scholar 

  37. Black, D., Harada, M., Schechter, J.: Phys. Rev. D 73, 054017 (2006). arXiv:hep-ph/0601052

    Article  ADS  Google Scholar 

  38. Litvinov, Y.A., Bosch, F., Winckler, N., Boutin, D., Essel, H.G., Faestermann, T., Geissel, H., Hess, S., et al.: Phys. Lett. B 664, 162–168 (2008). arXiv:0801.2079 [nucl-ex]

    Article  ADS  Google Scholar 

  39. Li, Q., Bleicher, M.: J. Phys. G 36, 015111 (2009). arXiv:0808.3457 [nucl-th]

    Article  ADS  Google Scholar 

  40. Baru, V., Haidenbauer, J., Hanhart, C., Kudryavtsev, A.E., Meissner, U.-G.: Eur. Phys. J. A 23, 523–533 (2005). nucl-th/0410099

    Article  ADS  Google Scholar 

  41. Giacosa, F., Pagliara, G.: Nucl. Phys. A 833, 138–155 (2010). arXiv:0905.3706 [hep-ph]

    Article  ADS  Google Scholar 

  42. Kalashnikova, Y., Kudryavtsev, A.E., Nefediev, A.V., Haidenbauer, J., Hanhart, C.: Phys. Rev. C 73, 045203 (2006). nucl-th/0512028

    Article  ADS  Google Scholar 

  43. Degasperis, A., Fonda, L., Ghirardi, G.C.: Nuovo Cimento 21, 471 (1974)

    Article  ADS  Google Scholar 

  44. Fonda, L., Ghirardi, G.C., Omero, C., Rimini, A., Weber, T.: Phys. Rev. D 18, 4757 (1978)

    Article  ADS  Google Scholar 

  45. Koshino, K., Shimizu, A.: Phys. Rep. 412, 191 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  46. Hotta, M., Morikawa, M.: 326(1–2), 32–41

  47. Delgado, F., Muga, J.G., Garcia-Calderon, G.: Phys. Rev. A 74, 062102 (2006)

    Article  ADS  Google Scholar 

  48. Terning, J.: Phys. Rev. D 44, 887 (1991)

    Article  ADS  Google Scholar 

  49. Efimov, G.V., Ivanov, M.A.: The Quark Confinement Model of Hadrons, p. 177. IOP, Bristol (1993)

    Google Scholar 

  50. Burdanov, Y.V., Efimov, G.V., Nedelko, S.N., Solunin, S.A.: Phys. Rev. D 54, 4483 (1996). arXiv:hep-ph/9601344

    Article  ADS  Google Scholar 

  51. Faessler, A., Gutsche, T., Ivanov, M.A., Lyubovitskij, V.E., Wang, P.: Phys. Rev. D 68, 014011 (2003). arXiv:hep-ph/0304031

    Article  ADS  Google Scholar 

  52. Giacosa, F., Gutsche, T., Faessler, A.: Phys. Rev. C 71, 025202 (2005). arXiv:hep-ph/0408085

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Giuseppe Pagliara for cooperation and many valuable discussions on the subject and Thomas Wolkanowski for useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Giacosa.

Appendices

Appendix A: The Loop Function

In order to regularize the self-energy diagram of Fig. 1b we introduce at each vertex the vertex-function \(\tilde{\phi}(q)\). At the level of the Lagrangian formulation this can be achieved by rendering the Lagrangian nonlocal, see details in Refs. [22, 4852] and refs. therein. The integral in Eq. (10) takes the form

$$ \varSigma\bigl(p^{2},m^{2}\bigr)=-i\int\frac{d^{4}q}{(2\pi)^{4}} \frac{\tilde{\phi}(q)^{2}}{ [ ( \frac{p+2q}{2} )^{2}-m^{2}+i\varepsilon ] [ ( \frac{p-2q}{2} )^{2}-m^{2}+i\varepsilon ] } . $$
(141)

A general property of Σ(x,m 2) follows from the optical theorem:

$$(\sqrt{2}g)^{2}\operatorname{Im}\bigl[\varSigma\bigl(x,m^{2}\bigr) \bigr]=x\varGamma^{\text{t-l}}(x,m,g) \bigl[ \tilde{\phi}\bigl(q=(0,\mathbf{q}) \bigr) \bigr]^{2}\text{,}$$

where

$$ \mathbf{q}^{2}=\frac{x^{2}}{4}-m^{2} .$$
(142)

Due to spatial isotropy, the function \(\tilde{\phi}(q=(0,\mathbf{q}))\) must depend on q 2.

For a generic \(\tilde{\phi}(q)\), the tree-level decay width is indeed not given by Eq. (2) but takes the following modified form:

$$ \varGamma^{\text{t-l}}(x,m,g)\rightarrow\varGamma^{\text{t-l}}(x,m,g) \bigl[ \tilde{\phi}\bigl(q=(0,\vec{q})\bigr) \bigr]^{2} .$$
(143)

When assuming that \(\tilde{\phi}(q)=\tilde{\phi}(\mathbf{q})\) (i.e. when we drop the dependence on q 0), we can perform, in the rest frame of the S particle (p=(x,0)), the integral over q 0 in Eq. (141), obtaining:

$$ \varSigma\bigl(x^{2},m^{2}\bigr)=\int\frac{d^{3}q}{(2\pi)^{3}} \frac{\tilde{\phi}^{2}(\mathbf{q})}{\sqrt{\mathbf{q}^{2}+m^{2}} ( 4(\mathbf{q}^{2}+m^{2})-x^{2}-i\varepsilon ) } . $$
(144)

In this work we make the following simple choice for numerical evaluations:

$$ \tilde{\phi}(q)=\tilde{\phi}(\mathbf{q})=\theta\bigl(\varLambda^{2}- \mathbf{q}^{2}\bigr) ,$$
(145)

i.e. we work with a sharp cutoff Λ. (In general, the use of smooth functions affects the results only slightly, thus showing a weak dependence on the adopted vertex function. An explicit calculation has been presented in Ref. [21].) In this case, by performing also the spatial integration we obtain the explicit result:

$$ \begin{aligned}[b] \varSigma\bigl(x,m^{2}\bigr)&=\frac{-\sqrt{4m^{2}-x^{2}}}{8\pi^{2}x}\arctan \biggl( \frac{\varLambda x}{\sqrt{\varLambda^{2}+m^{2}}\sqrt{4m^{2}-x^{2}}} \biggr) \\ &\quad {}-\frac{1}{8\pi^{2}}\log \biggl( \frac{m}{\varLambda+\sqrt{\varLambda^{2}+m^{2}}} \biggr) . \end{aligned}$$
(146)

Following comments are in order:

  1. (i)

    The imaginary part of the self-energy amplitude \(\operatorname{Im}[\varSigma(x^{2},m^{2})]\) is zero for 0<x<2m and nonzero starting at threshold.

  2. (ii)

    The real part \((\sqrt{2}g)^{2}\mathrm{Re}[\varSigma(x^{2},m^{2})]\) is nonzero below and above threshold and depends explicitly on the cutoff Λ.

  3. (iii)

    For the case \(\tilde{\phi}(q)=\theta(\varLambda^{2}-\mathbf{q}^{2})\), the optical theorem takes the form

    $$ (\sqrt{2}g)^{2}\operatorname{Im}\bigl[\varSigma\bigl(x^{2},m^{2} \bigr)\bigr]=x\varGamma^{\text{t-l}}(x,m,g)\theta \biggl( \sqrt{ \varLambda^{2}+m^{2}}-\frac{x}{2} \biggr) \text{,}$$
    (147)

    Besides the additional θ function, it does not depend on the cutoff Λ. Note that Eq. (13) in the text is strictly speaking valid only for \(x<2\sqrt{\varLambda^{2}+m_{1}^{2}}\). This condition is numerically met in Figs. 2 and 6.

  4. (iv)

    The present choice of \(\tilde{\phi}(q)\) breaks Lorentz invariance. This is here not a problem, because we always work in the rest frame of S. It is also not difficult to generalize \(\tilde{\phi}(q)\) in order that it is Lorentz invariant and delivers the same results of this paper when the rest frame of S is considered.

As a last step we turn to the issue of the bare and renormalized masses: in this work we started with the bare mass M 0 entering in the Lagrangian of Eq. (1) and then we derived the renormalized mass M in Eq. (16), arising upon the inclusion and the resummation of the self-energy diagram of Fig. 1b. Alternatively, one could have added a counterterm in Eq. (1):

$$ \mathcal{L\rightarrow L-}\frac{1}{2}CS^{2}\quad \text{with}\ C=R(M_{0}). $$
(148)

In this way the mass equation takes the form

$$M^{2}-M_{0}^{2}-C+R(M)=0\rightarrow M=M_{0} .$$

Clearly, all the physical results of this work would be unaffected by this alternative procedure.

Appendix B: The n-Channel Case

In the n-channel case the interaction Lagrangian takes the form

$$ \mathcal{L}_{int}=\sum_{i=1}^{n}g_{i}S \varphi_{i}^{2} ,$$
(149)

where the particle φ i has a mass m i . The spectral function (or mass distribution) d S (x) can be decomposed as \(d_{S}(x)=\sum_{i=1}^{n}d_{S}^{(i)}(x)\) with

$$ \begin{aligned} d_{S}^{(i)}(x)&=\frac{2x}{\pi}\lim_{\varepsilon\rightarrow0} \frac{2g_{i}^{2}\operatorname{Im} [ \varSigma(p^{2},m_{i}^{2}) ] +\varepsilon }{ ( x^{2}-M_{0}^{2}+\operatorname{Re}\varPi(x^{2}) )^{2}+ ( \operatorname{Im}\varPi(x^{2})+\varepsilon )^{2}} , \\ \varPi (x)&=\sum_{i=1}^{n}( \sqrt{2}g_{i})^{2}\varSigma\bigl(x^{2},m_{i}^{2} \bigr) .\end{aligned} $$
(150)

We define a i (t) as the Fourier transform of \(d_{S}^{(i)}(x)\):

$$ a_{i}(t)=\int_{-\infty}^{\infty} dx d_{S}^{(i)}(x)e^{-ixt}. $$
(151)

Out of a i (t) we define

$$ A_{i}(t)=\bigl \vert a_{i}(t)\bigr \vert ^{2} , \qquad A_{mix,i}(t)=\sum_{j=1,j\neq i}^{n} \frac{a_{i}(t)a_{j}^{\ast}(t)+a_{i}^{\ast}(t)a_{j}(t)}{2} . $$
(152)

The probability that the state |S〉 decays in the time interval (t,t+dt) into the i-th channel reads h i (t)dt, where

$$ h_{i}(t)=-A_{i}^{\prime}(t)-A_{mix,i}^{\prime}(t) .$$
(153)

It is possible to define the n(n−1)/2 ratio functions

$$ R_{ij}(t)=\frac{h_{i}(t)}{h_{j}(t)}\quad \text{with}\ i<j,\ i=j=1,\ldots, n. $$
(154)

In the BW limit one has R ij (t)→Γ i /Γ j , where Γ i is the tree-level decay width in the i-th channel. In general, we expect large deviations from the BW limit. Indeed, many unstable particles of the Standard Model decay in more than two channels: the analysis of the temporal behavior can be performed through the formulae derived here. Explicit calculations represent an outlook for the future.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giacosa, F. Non-exponential Decay in Quantum Field Theory and in Quantum Mechanics: The Case of Two (or More) Decay Channels. Found Phys 42, 1262–1299 (2012). https://doi.org/10.1007/s10701-012-9667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-012-9667-3

Keywords

Navigation