Skip to main content
Log in

A Physical Approach to Tsirelson’s Problem

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Tsirelson’s problem deals with how to model separate measurements in quantum mechanics. In addition to its theoretical importance, the resolution of Tsirelson’s problem could have great consequences for device independent quantum key distribution and certified randomness. Unfortunately, understanding present literature on the subject requires a heavy mathematical background. In this paper, we introduce quansality, a new theoretical concept that allows to reinterpret Tsirelson’s problem from a foundational point of view. Using quansality as a guide, we recover all known results on Tsirelson’s problem in a clear and intuitive way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note the relation with the concept of steering in Quantum Information Theory [12].

  2. More concretely, that the spectrum of the Hamiltonian H does not have accumulation points. This is always the case if H describes a finite number of trapped non-relativistic particles subject to a potential bounded from below.

References

  1. Haag, R.: Local Quantum Physics. Fields, Particles, Algebras. Springer, Berlin (1996)

    MATH  Google Scholar 

  2. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  3. Masanes, Ll., Pironio, S., Acín, A.: Secure device-independent quantum key distribution with causally independent measurement devices. Nat. Commun. 2, 238 (2011)

    Article  Google Scholar 

  4. Hänggi, E., Renner, R.: Device-Independent quantum key distribution with commuting measurements. arXiv:1009.1833 (2010)

  5. Pironio, S., Acín, A., Massar, S., Boyer de la Giroday, A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010)

    Article  ADS  Google Scholar 

  6. Navascués, M., Pironio, S., Acín, A.: Bounding the set of quantum correlations. Phys. Rev. Lett. 98, 010401 (2007)

    Article  ADS  Google Scholar 

  7. Navascués, M., Pironio, S., Acín, A.: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 10, 073013 (2008)

    Article  ADS  Google Scholar 

  8. Scholz, V.B., Werner, R.F.: Tsirelson’s problem. arxiv:0812.4305 (2008)

  9. Junge, M., Navascués, M., Palazuelos, C., Pérez-García, D., Scholz, V.B., Werner, R.F.: Connes’ embedding problem and Tsirelson’s problem. J. Math. Phys. 52, 012102 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  10. Fritz, T.: Tsirelson’s problem and Kirchberg’s conjecture. arXiv:1008.1168 (2010)

  11. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379–385 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  12. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  13. Barnum, H., Beigi, S., Boixo, S., Elliott, M.B., Wehner, S.: Local quantum measurement and no-signaling imply quantum correlations. Phys. Rev. Lett. 104, 140401 (2010)

    Article  ADS  Google Scholar 

  14. Acín, A., Augusiak, R., Cavalcanti, D., Hadley, C., Korbicz, J.K., Lewenstein, M., Masanes, Ll., Piani, M.: Unified framework for correlations in terms of local quantum observables. Phys. Rev. Lett. 104, 140404 (2010)

    Article  ADS  Google Scholar 

  15. Pérez-García, D., Wolf, M.M., Petz, D., Ruskai, M.B.: Contractivity of positive and trace-preserving maps under Lp norms. J. Math. Phys. 47, 083506 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  16. Navascués, M., Pérez-García, D.: Sequential strong measurements and the heat vision effect. New J. Phys. 13, 113038 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the projects QUITEMAD, QUEVADIS, I-MATH and MTM2008-01366.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Navascués.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navascués, M., Cooney, T., Pérez-García, D. et al. A Physical Approach to Tsirelson’s Problem. Found Phys 42, 985–995 (2012). https://doi.org/10.1007/s10701-012-9641-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-012-9641-0

Keywords

Navigation