Skip to main content

Advertisement

Log in

Quantum Non-Gravity and Stellar Collapse

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Observational indications combined with analyses of analogue and emergent gravity in condensed matter systems support the possibility that there might be two distinct energy scales related to quantum gravity: the scale that sets the onset of quantum gravitational effects \(E_{\rm B}\) (related to the Planck scale) and the much higher scale \(E_{\rm L}\) signalling the breaking of Lorentz symmetry. We suggest a natural interpretation for these two scales: \(E_{\rm L}\) is the energy scale below which a special relativistic spacetime emerges, \(E_{\rm B}\) is the scale below which this spacetime geometry becomes curved. This implies that the first ‘quantum’ gravitational effect around \(E_{\rm B}\) could simply be that gravity is progressively switched off, leaving an effective Minkowski quantum field theory up to much higher energies of the order of \(E_{\rm L}\). This scenario may have important consequences for gravitational collapse, inasmuch as it opens up new possibilities for the final state of stellar collapse other than an evaporating black hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacobson, T., Liberati, S., Mattingly, D.: Lorentz violation at high energy: concepts, phenomena and astrophysical constraints. Ann. Phys. 321, 150 (2006). arXiv:astro-ph/0505267

    Article  ADS  MATH  Google Scholar 

  2. Maccione, L., Taylor, A.M., Mattingly, D.M., Liberati, S.: Planck-scale Lorentz violation constrained by ultra-high-energy cosmic rays. J. Cosmol. Astropart. Phys. 0904, 022 (2009). arXiv:0902.1756 [astro-ph.HE]

    Article  ADS  Google Scholar 

  3. Volovik, G.: From quantum hydrodynamics to quantum gravity. In: Kleinert, H., Jantzen, R.T., Ruffini, R. (eds.) Proceedings of the 11th Marcel Grossmann Meeting on General Relativity. World Scientific, Singapore (2008). arXiv:gr-qc/0612134

    Google Scholar 

  4. Volovik, G.E.: The Universe in a Helium Droplet. Clarendon, Oxford (2003)

    MATH  Google Scholar 

  5. Volovik, G.E.: Fermi-point scenario for emergent gravity, PoS QG-Ph:043 (2007). arXiv:0709.1258 [gr-qc]

  6. Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topol. 3 Suppl 1, 3 (1964)

    MathSciNet  Google Scholar 

  7. Hořava, P.: Stability of Fermi surfaces and K-theory. Phys. Rev. Lett. 95, 016405 (2005). hep-th/0503006

    Article  ADS  Google Scholar 

  8. Sakharov, A.D.: Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. Dokl. 12, 1040 (1968). Dokl. Akad. Nauk Ser. Fiz. 177, 70 (1967)

    ADS  Google Scholar 

  9. Visser, M.: Sakharov’s induced gravity: a modern perspective. Mod. Phys. Lett. A 17, 977 (2002). arXiv:gr-qc/0204062

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Barceló, C., Liberati, S., Visser, M.: Analogue gravity. Living Rev. Relativ. 8, 12 (2005). arXiv:gr-qc/0505065. http://www.livingreviews.org/lrr-2005-12

    ADS  Google Scholar 

  11. Weinberg, S., Witten, E.: Limits on massless particles. Phys. Lett. B 96, 59 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  12. Boughn, S.: Nonquantum gravity. Found. Phys. 39, 331 (2009). arXiv:0809.4218 [gr-qc]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Barceló, C., Liberati, S., Sonego, S., Visser, M.: Fate of gravitational collapse in semiclassical gravity. Phys. Rev. D 77, 044032 (2008). arXiv:0712.1130 [gr-qc]

    Article  ADS  Google Scholar 

  14. Barcelo, C., Liberati, S., Sonego, S., Visser, M.: Hawking-like radiation does not require a trapped region. Phys. Rev. Lett. 97, 171301 (2006). arXiv:gr-qc/0607008

    Article  MathSciNet  ADS  Google Scholar 

  15. Ashtekar, A., Bojowald, M.: Black hole evaporation: a paradigm. Class. Quantum Gravity 22, 3349 (2005). arXiv:gr-qc/0504029

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Mazur, P.O., Mottola, E.: Gravitational vacuum condensate stars. Proc. Natl. Acad. Sci. 101, 9545–9550 (2004). gr-qc/0407075

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jannes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barceló, C., Garay, L.J. & Jannes, G. Quantum Non-Gravity and Stellar Collapse. Found Phys 41, 1532–1541 (2011). https://doi.org/10.1007/s10701-011-9577-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-011-9577-9

Keywords

Navigation