Skip to main content
Log in

From a 1D Completed Scattering and Double Slit Diffraction to the Quantum-Classical Problem for Isolated Systems

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

By probability theory the probability space to underlie the set of statistical data described by the squared modulus of a coherent superposition of microscopically distinct (sub)states (CSMDS) is non-Kolmogorovian and, thus, such data are mutually incompatible. For us this fact means that the squared modulus of a CSMDS cannot be unambiguously interpreted as the probability density and quantum mechanics itself, with its current approach to CSMDSs, does not allow a correct statistical interpretation. By the example of a 1D completed scattering and double slit diffraction we develop a new quantum-mechanical approach to CSMDSs, which requires the decomposition of the non-Kolmogorovian probability space associated with the squared modulus of a CSMDS into the sum of Kolmogorovian ones. We adapt to CSMDSs the presented by Khrennikov (Found. Phys. 35(10):1655, 2005) concept of real contexts (complexes of physical conditions) to determine uniquely the properties of quantum ensembles. Namely we treat the context to create a time-dependent CSMDS as a complex one consisting of elementary (sub)contexts to create alternative subprocesses. For example, in the two-slit experiment each slit generates its own elementary context and corresponding subprocess. We show that quantum mechanics, with a new approach to CSMDSs, allows a correct statistical interpretation and becomes compatible with classical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballentine, L.E.: The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42(4), 358–381 (1970)

    Article  ADS  MATH  Google Scholar 

  2. Home, D., Whitakker, M.A.B.: Ensemble interpretation of quantum mechanics. A modern perspective. Phys. Rep. 210(4), 223–317 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  3. Leggett, A.J.: Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys., Condens. Matter 14, R415–R451 (2002)

    Article  ADS  Google Scholar 

  4. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge (2004)

  5. ’t Hooft, G.: On the free-will postulate in quantum mechanics (2007). quant-ph/0701097

  6. Bohr, B.: Maxwell and modern theoretical physics. Nature 128, 691–692 (1931)

    Article  ADS  MATH  Google Scholar 

  7. Khrennikov, A.Yu.: EPR-Bohm experiment and Bell’s inequality: Quantum physics meets probability theory. Theor. Math. Phys. 157, 99–115 (2008)

    Article  MathSciNet  Google Scholar 

  8. Accardi, L.: Snapshots on quantum probability. Vestn. Samara State Univ., Nat. Sci. Ser. 67(8/1), 277–294 (2008)

    Google Scholar 

  9. Khrennikov, A.Yu.: The principle of supplementarity: a contextual probabilistic viewpoint to complementarity, the interference of probabilities and incompatibility of variables in quantum mechanics Found. Phys. 35(10), 1655–1693 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Chuprikov, N.L.: New approach to the quantum tunnelling process: wave functions for transmission and reflection. Russ. Phys. J. 49, 119–126 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chuprikov, N.L.: New approach to the quantum tunnelling process: characteristic times for transmission and reflection. Russ. Phys. J. 49, 314–325 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chuprikov, N.L.: On a new mathematical model of tunnelling. Vestn. Samara State Univ., Nat. Sci. Ser. 67(8/1), 625–633 (2008)

    Google Scholar 

  13. Chuprikov, N.L.: On the generalized Hartman effect: scattering a particle on two identical rectangular potential barriers. arXiv:1005.1323v2

  14. Hartman, T.E.: Tunneling of a wave packet. J. Appl. Phys. 33, 3427–3433 (1962)

    Article  ADS  Google Scholar 

  15. Olkhovsky, V.S., Recami, E., Salesi, G.: Superluminal tunnelling through two successive barriers. Europhys. Lett. 57, 879–884 (2002)

    Article  ADS  Google Scholar 

  16. Olkhovsky, V.S., Recami, E., Jakiel, J.: Unified time analysis of photon and particle tunnelling. Phys. Rep. 398, 133–178 (2004)

    Article  ADS  Google Scholar 

  17. Winful, H.G.: Tunneling time, the Hartman effect, and superluminality: a proposed resolution of an old paradox. Phys. Rep. 436, 1–69 (2006)

    Article  ADS  Google Scholar 

  18. Lunardi, J.T., Manzoni, L.A.: Relativistic tunnelling through two successive barriers. Phys. Rev. A 76, 042111 (2007)

    Article  ADS  Google Scholar 

  19. Nimtz, G.: On virtual phonons, photons, and electrons. Found. Phys. (2009). doi:10.1007/s10701-009-9356-z

  20. Krekora, P., Su, Q., Grobe, R.: Effects of relativity on the time-resolved tunnelling of electron wave packets. Phys. Rev. A 63, 032107 (2001)

    Article  ADS  Google Scholar 

  21. Li, Z.J.Q., Nie, Y.H., Liang, J.J., Liang, J.Q.: Larmor precession and dwell time of a relativistic particle scattered by a rectangular quantum well. J. Phys. A, Math. Gen. 36, 6563–6570 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Buttiker, M., Landauer, R.: Traversal time for tunneling. Phys. Rev. Lett. 49, 1739–1742 (1982)

    Article  ADS  Google Scholar 

  23. Landauer, R., Martin, Th.: Barrier interaction time in tunnelling. Rev. Mod. Phys. 66, 217–228 (1994)

    Article  ADS  Google Scholar 

  24. Buttiker, M.: Larmor precession and the traversal time for tunnelling. Phys. Rev. B 27, 6178–6188 (1983)

    Article  ADS  Google Scholar 

  25. Home, D., Kaloyerou, P.N.: New twists to Einstein’s two-slit experiment: complementarity vis-à-vis the causal interpretation. J. Phys. A, Math. Gen. 22, 3253–3266 (1989)

    Article  ADS  Google Scholar 

  26. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1268–1305 (2004)

    ADS  Google Scholar 

  27. Joos, E., Zeh, H.D.: The emergence of classical properties through interaction with the environment. Z. Phys. B 59, 223–243 (1985)

    Article  ADS  Google Scholar 

  28. Ghirardi, G.C., Grassi, R., Rimini, A.: Continuous-spontaneous-reduction model involving gravity. Phys. Rev. A 42, 1057–1064 (1990)

    Article  ADS  Google Scholar 

  29. Ballentine, L.E.: Failure of some theories of state reduction. Phys. Rev. A 43(1), 9–12 (1991)

    Article  ADS  Google Scholar 

  30. Volovich, I.V.: Quantum cryptography in space and Bell’s theorem. In: Khrennikov, A.Y. (ed.) Proc. Conf. Foundations of Probability and Physics. Ser. Quantum Probability and While Noise Analysis, vol. 13, pp. 364–372. World Sci., River Edge (2001)

    Chapter  Google Scholar 

  31. Volovich, I.V.: Towards quantum information theory in space and time. In: Khrennikov, A.Y. (ed.) Proc. Conf. Quantum Theory: Reconsideration of Foundations. Ser. Math. Modelling. Vaxjo Univ. Press., vol. 2, pp. 423–440. (2002)

    Google Scholar 

  32. Christian, J.: Disproofs of Bell, GHZ, and Hardy type theorems and the illusion of entanglement (2009). arXiv:0904.4259v4

  33. Fine, A.: Hidden variables, joint probability, and the bell inequalities. Phys. Rev. Lett. 48, 291–295 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  34. Accardi, L.: Topics in quantum probability. Phys. Rep. 77, 169–192 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  35. Pitowsky, I.: Resolution of the Einstein-Podolsky-Rosen and Bell paradoxes. Phys. Rev. Lett. 48, 1299–1302 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  36. Rastall, P.: The Bell inequalities. Found. Phys. 13(6), 555–570 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  37. Hess, K., Michielsen, K., De Raedt, H.: Possible experience: from Boole to Bell. Europhys. Lett. 87(6), 60007 (2009)

    Article  ADS  Google Scholar 

  38. Nieuwenhuizen, T.M.: Is the contextuality loophole fatal for the derivation of Bell inequalities? Found. Phys. (2010). doi:10.1007/s10701-010-9461-z

    Google Scholar 

  39. Andreev, V.A.: The correlation Bell inequalities. Teor. Mat. Fiz. 158(2), 234–249 (2009)

    Google Scholar 

  40. Accardi, L., Regoli, M.: Locality and Bell’s inequality (2000). arXiv:quant-ph/0007005v2

  41. Khrennikov, A.: Non-Kolmogorov probability models and modified Bell’s inequality. J. Math. Phys. 41(4), 1768–1777 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Khrennikov, A.Y.: Contextual Approach to Quantum Formalism, p. 353. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  43. Accardi, L.: Dialogs on Quantum Mechanics. Moscow, (2004) 447 p

  44. Khrennikov, A.: Detection model based on representation of quantum particles by classical random fields: Born’s rule and beyond. Found. Phys. 39(9), 997–1022 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Hestenes, D.: Zitterbewegung in quantum mechanics. Found. Phys. 40(1), 1–54 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Hofer, W.A.: Unconventional approach to orbital-free density functional theory derived from a model of extended electrons. Found. Phys. (2010). doi:10.1007/s10701-010-9517-0

    Google Scholar 

  47. Slavnov, D.A.: The locality problem in quantum measurements. Phys. Part. Nucl. 41(1), 149–173 (2007). arXiv:1010.4412v1

    Article  MathSciNet  Google Scholar 

  48. Afshar, Sh.S., Flores, E., McDonald, K.F., Knoesel, E.: Paradox in wave-particle duality. Found. Phys. 37(2), 295–305 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay L. Chuprikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuprikov, N.L. From a 1D Completed Scattering and Double Slit Diffraction to the Quantum-Classical Problem for Isolated Systems. Found Phys 41, 1502–1520 (2011). https://doi.org/10.1007/s10701-011-9564-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-011-9564-1

Keywords

Navigation