Skip to main content
Log in

Observers and Locality in Everett Quantum Field Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A model for measurement in collapse-free nonrelativistic fermionic quantum field theory is presented. In addition to local propagation and effectively-local interactions, the model incorporates explicit representations of localized observers, thus extending an earlier model of entanglement generation in Everett quantum field theory (Rubin in Found. Phys. 32:1495–1523, 2002). Transformations of the field operators from the Heisenberg picture to the Deutsch-Hayden picture, involving fictitious auxiliary fields, establish the locality of the model. The model is applied to manifestly-local calculations of the results of measurements, using a type of sudden approximation and in the limit of massive systems in narrow-wavepacket states. Detection of the presence of a spin-1/2 system in a given spin state by a freely-moving two-state observer illustrates the features of the model and the nonperturbative computational methodology. With the help of perturbation theory the model is applied to a calculation of the quintessential “nonlocal” quantum phenomenon, spin correlations in the Einstein-Podolsky-Rosen-Bohm experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Everett, H. III: ‘Relative state’ formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957). Reprinted in B.S. DeWitt, N. Graham (eds.) The Many Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1973)

    Article  MathSciNet  ADS  Google Scholar 

  2. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964). Reprinted in J.S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  3. Vaidman, L.: Many-worlds interpretation of quantum mechanics. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy (Summer 2002 Edition). http://plato.stanford.edu/archives/sum2002/entries/qm-manyworlds

  4. Zeh, H.D.: On the interpretation of measurement in quantum theory. Found. Phys. 1, 69–76 (1970)

    Article  ADS  Google Scholar 

  5. Stapp, H.P.: Locality and reality. Found. Phys. 10, 767–795 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  6. Page, D.N.: The Einstein-Podolsky-Rosen physical reality is completely described by quantum mechanics. Phys. Lett. 91A, 57–60 (1982)

    MathSciNet  ADS  Google Scholar 

  7. Stapp, H.P.: Bell’s theorem and the foundations of quantum mechanics. Am. J. Phys. 306–317 (1985)

  8. Tipler, F.J.: The many-worlds interpretation of quantum mechanics in quantum cosmology. In: Penrose, R., Isham, C.J. (eds.) Quantum Concepts in Space and Time. Oxford University Press, New York (1986)

    Google Scholar 

  9. Albert, D., Loewer, B.: Interpreting the many worlds interpretation. Synthese 77, 195–213 (1988)

    Article  MathSciNet  Google Scholar 

  10. Albert, D.Z.: Quantum Mechanics and Experience. Harvard University Press, Cambridge (1992)

    Google Scholar 

  11. Vaidman, L.: On the paradoxical aspects of new quantum experiments. In: Hull, D. et al. (eds.) PSA 1994: Proceedings of the 1994 Biennial Meeting of the Philosophy of Science Association, vol. 1, pp. 211–217. Philosophy of Science Association, East Lansing (1994)

    Google Scholar 

  12. Price, M.C.: The Everett FAQ. http://www.hedweb.com/manworld.htm (1995)

  13. Lockwood, M.: Many minds’ interpretations of quantum mechanics. Br. J. Philos. Sci. 47, 159–188 (1996)

    Article  MathSciNet  Google Scholar 

  14. Deutsch, D.: Reply to Lockwood. Br. J. Philos. Sci. 47, 222–228 (1996)

    Article  MathSciNet  Google Scholar 

  15. Vaidman, L.: On schizophrenic experiences of the neutron or why we should believe in the many-worlds interpretation of quantum theory. Int. Stud. Philos. Sci. 12, 245–261 (1998). arXiv:quant-ph/9609006

    Article  MathSciNet  MATH  Google Scholar 

  16. Tipler, F.J.: Does quantum nonlocality exist? Bell’s theorem and the many-worlds interpretation (2000). arXiv:quant-ph/0003146

  17. Deutsch, D.: The structure of the multiverse. Proc. R. Soc. Lond. A 458, 2911–2923 (2002). arXiv:quant-ph/0104033

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Bacciagaluppi, G.: Remarks on space-time and locality in Everett’s interpretation (2001). http://philsci-archive.pitt.edu/archive/00000504/01/cracow.pdf

  19. Timpson, C.G., Brown, H.R.: Entanglement and relativity. In: Lupacchini, R., Fano, V. (eds.) Understanding Physical Knowledge. Department of Philosophy, University of Bologna, CLUEB (2002). arXiv:quant-ph/0212140

  20. Hewitt-Horsman, C.: An introduction to many worlds in quantum computation. Found. Phys. 39, 826–902 (2009). arXiv:0802.2504

    Article  MathSciNet  Google Scholar 

  21. Reichenbach, H.: The Direction of Time. Dover, New York (1999)

    Google Scholar 

  22. Bohm, D.: Quantum Theory. Prentice-Hall, Englewood Cliffs (1951)

    Google Scholar 

  23. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  24. Howard, D.: Einstein on locality and separability. Stud. Hist. Philos. Sci. 16, 171–201 (1985)

    Article  MathSciNet  Google Scholar 

  25. Deutsch, D., Hayden, P.: Information flow in entangled quantum systems. Proc. R. Soc. Lond. A 456, 1759–1774 (2000). arXiv:quant-ph/9906007

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Hewitt-Horsman, C., Vedral, V.: Developing the Deutsch-Hayden approach to quantum mechanics. New J. Phys. 9, 135 (2007)

    Article  ADS  Google Scholar 

  27. Hewitt-Horsman, C., Vedral, V.: Entanglement without nonlocality. Phys. Rev. A 76, 062319 (2007). arXiv:quant-ph/0611237

    Article  MathSciNet  ADS  Google Scholar 

  28. Rubin, M.A.: Spatial degrees of freedom in Everett quantum mechanics. Found. Phys. 36, 1115–1159 (2006). arXiv:quant-ph/0511188

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Stapp, H.P.: The basis problem in many-worlds theories. Can. J. Phys. 86, 1043–1052 (2002). arXiv:quant-ph/0110148

    Article  ADS  Google Scholar 

  30. Weinberg, S.: The Quantum Theory of Fields, vol. I. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  31. Rubin, M.A.: Locality in the Everett interpretation of quantum field theory. Found. Phys. 32, 1495–1523 (2002). arXiv:quant-ph/0204024

    Article  MathSciNet  Google Scholar 

  32. Deutsch, D.: Qubit field theory, arXiv:quant-ph/0401024v1

  33. Brown, L.: Quantum Field Theory. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  34. Lange, M.: An Introduction to the Philosophy of Physics: Locality, Fields, Energy and Mass. Blackwell, Malden (2002)

    Google Scholar 

  35. Hardy, L.: Formalism locality in quantum theory and quantum gravity. In: Bokulich, A., Jaeger, G. (eds.) Philosophy of Quantum Information and Entanglement. Cambridge University Press (to appear). arXiv:0804.0054v1

  36. d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics, 2nd edn. Benjamin, Reading (1976)

    Google Scholar 

  37. Zurek, W.H.: private communication reported in Sec. IV.C.1 of Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267–1305 (2004). arXiv:quant-ph/0312059

  38. Tani, S.: Scattering involving a bound state. Phys. Rev. 117, 252–260 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Girardeau, M.D.: Second-quantization representation for systems of atoms, nuclei, and electrons. Phys. Rev. Lett. 27, 1416–1419 (1971)

    Article  ADS  Google Scholar 

  40. Stolt, R.H., Brittin, W.E.: New method for treating systems containing elementary composite particles (nonrelativistic theory). Phys. Rev. Lett. 27, 616–619 (1971)

    Article  ADS  Google Scholar 

  41. Sakakura, A.Y.: Composite particles in many-body systems. Phys. Rev. Lett. 27, 822–826 (1971)

    Article  ADS  Google Scholar 

  42. Girardeau, M.D.: Second-quantization representation for a nonrelativistic system of composite particles. I. Generalized Tani transformation and its iterative evaluation. J. Math. Phys. 16, 1901–1919 (1975)

    Article  ADS  Google Scholar 

  43. Gilbert, J.D.: Second-quantized representation for a model system with composite particles. J. Math. Phys. 18, 791–805 (1977)

    Article  ADS  Google Scholar 

  44. Girardeau, M.D.: Fock-Tani representation for composite-particles in a soluble model. J. Math. Phys. 21, 2365–2375 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  45. Gilbert, J.G.: A generalized Fock-Tani representation of non-relativistic systems containing composite-particles. Physica A 149, 323–340 (1988)

    Article  ADS  Google Scholar 

  46. Girardeau, M.D., Krein, G., Hadjimichef, D.: Field-theoretic approach for systems of composite hadrons. Mod. Phys. Lett. A 11, 1121–1129 (1996)

    Article  ADS  Google Scholar 

  47. Hadjimichef, D., Krein, G., Szpigel, S., Da Veiga, J.S.: Mapping of composite hadrons into elementary hadrons and effective hadronic Hamiltonians. Ann. Phys. 268, 105–148 (1998)

    Article  ADS  MATH  Google Scholar 

  48. Krein, G.: Many-body theory for systems of composite hadrons. Phys. Part. Nucl. 31, 603–618 (2000)

    Google Scholar 

  49. Zhou, D.L., Yu, S.X., Sun, C.P.: Idealization second quantization of composite particles. Commun. Theor. Phys. 36, 525–530 (2001). arXiv:quant-ph/0012080

    Google Scholar 

  50. Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition, 2nd edn. Springer, Berlin (2008)

    Google Scholar 

  51. Rubin, M.A.: Locality in the Everett interpretation of Heisenberg-picture quantum mechanics. Found. Phys. Lett. 14, 301–322 (2001). arXiv:quant-ph/0103079

    Article  MathSciNet  Google Scholar 

  52. Rubin, M.A.: Relative frequency and probability in the Everett interpretation of Heisenberg-picture quantum mechanics. Found. Phys. 33, 379–405 (2003). arXiv:quant-ph/0209055

    Article  MathSciNet  Google Scholar 

  53. Rubin, M.A.: There is no basis ambiguity in Everett quantum mechanics. Found. Phys. Lett. 17, 323–341 (2004). arXiv:quant-ph/0310186

    Article  MathSciNet  MATH  Google Scholar 

  54. Wallace, D.: Philosophy of quantum mechanics. In: Rickles, D. (ed.) The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate Publishing Ltd., Aldershot (2008). arXiv:0712.0149

    Google Scholar 

  55. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  56. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998). arXiv:quant-ph/9810080

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Knight, J.M.: Strict localisation in quantum field theory. J. Math. Phys. 2, 459 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Wallace, D.: In defence of naiveté: The conceptual status of Langrangian quantum field theory. Synthese 151, 33–80 (2006). arXiv:quant-ph/0112148

    Article  MathSciNet  MATH  Google Scholar 

  59. Mermin, N.D.: Quantum mysteries revisited. Am. J. Phys. 58, 731–734 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  60. Farris, W.G.: Probability in quantum mechanics, appendix to D. Wick. The Infamous Boundary: Seven Decades of Heresy in Quantum Physics. Springer, New York (1995)

  61. Veltman, M.: Diagrammatica: The Path to Feynman Diagrams, p. 222. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  62. Spanier, J., Oldham, K.B.: An Atlas of Functions, p. 387. Hemisphere, Washington (1987)

    MATH  Google Scholar 

  63. Greenberger, D.M., Horne, M., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  64. Fry, E.S., Walther, T., Li, S.: Proposal for a loophole-free test of the Bell inequalities. Phys. Rev. A 52, 4381–4395 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  65. Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)

    ADS  Google Scholar 

  66. Page, D.N.: Probabilities don’t matter. In: Keiser, M., Jantsen, R.T. (eds.) Proceedings of the 7th Marcel Grossmann Meeting on General Relativity. World Scientific, Singapore (1995). arXiv:gr-qc/9411004

    Google Scholar 

  67. Page, D.N.: Sensible quantum mechanics: Are only perceptions probabilistic? arXiv:quant-ph/9506010

  68. Page, D.N.: Sensible quantum mechanics: Are probabilities only in the mind? Int. J. Mod. Phys. D 5, 583–596 (1996). arXiv:gr-qc/9507042

    MathSciNet  ADS  Google Scholar 

  69. Gell-Mann, M., Hartle, J.B.: Classical equations for quantum systems. Phys. Rev. D 47, 3345–3382 (1993). arXiv:gr-qc/9210010

    MathSciNet  ADS  Google Scholar 

  70. Halliwell, J.J.: Decoherent histories and hydrodynamic equations. Phys. Rev. D 58, 105015 (1998). arXiv:quant-ph/9805062

    MathSciNet  ADS  Google Scholar 

  71. Halliwell, J.J.: Decoherent histories and the emergent classicality of local densities. Phys. Rev. Lett. 83, 2481–2485 (1999). arXiv:quant-ph/9905094

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. Halliwell, J.J.: Decoherence of histories and hydrodynamic equations for a linear oscillator chain. Phys. Rev. D 68, 025018 (2003). arXiv:quant-ph/0305084

    MathSciNet  ADS  Google Scholar 

  73. Halliwell, J.J.: Macroscopic superpositions, decoherent histories and the emergence of hydrodynamic behaviour. In: Saunders, S.W. et al. (eds.) Everett and His Critics. Oxford University Press, London (2009). arXiv:0903.1802

    Google Scholar 

  74. Timpson, C.G.: Nonlocality and information flow: The approach of Deutsch and Hayden. Found. Phys. 35, 313–343 (2005). arXiv:quant-ph/0312155

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. Wallace, D., Timpson, C.G.: Non-locality and gauge freedom in Deutsch and Hayden’s formulation of quantum mechanics. Found. Phys. 37, 951–955 (2007). arXiv:quant-ph/0503149

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Rubin.

Additional information

This work was sponsored by the Air Force under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the U.S. Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, M.A. Observers and Locality in Everett Quantum Field Theory. Found Phys 41, 1236–1262 (2011). https://doi.org/10.1007/s10701-011-9543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-011-9543-6

Keywords

Navigation