Skip to main content
Log in

Description of Composite Quantum Systems by Means of Classical Random Fields

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Recently a new attempt to go beyond QM was performed in the form of so-called prequantum classical statistical field theory (PCSFT). In this approach quantum systems are described by classical random fields, e.g., the electron field or the neutron field. Averages of quantum observables arise as approximations of averages of classical variables (functionals of “prequantum fields”) with respect to fluctuations of fields. For classical variables given by quadratic functionals of fields, quantum and prequantum averages simply coincide. In this paper we generalize PCSFT to the composite quantum system. The main discovery is that, opposite to a rather common opinion, a composite system can be described by the Cartesian product of state spaces (like in classical physics) and not by the tensor product of them (like in conventional QM). A natural interpretation of the quantum pure state for a composite system is proposed: it is the nondiagonal block in the covariance matrix of the random field describing a composite system. The interpretation of a pure state due to Dirac and von Neumann seems to be an artifact of the conventional mathematical description of micro-systems. PCSFT provides a new possibility for interpretation of entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khrennikov, A. (ed.): Foundations of Probability and Physics. Series PQ-QP: Quantum Probability and White Noise Analysis, vol. 13. WSP, Singapore (2001)

    MATH  Google Scholar 

  2. Adenier, G., Khrennikov, A., Nieuwenhuizen, Th.M. (eds.): Quantum Theory: Reconsideration of Foundations-3. American Institute of Physics, Ser. Conference Proceedings, vol. 810. Melville (2006)

  3. Plotnitsky, A.: Reading Bohr: Physics and Philosophy. Springer, Berlin (2006)

    MATH  Google Scholar 

  4. Bohr, N.: Phys. Rev. 48, 696–702 (1933)

    Article  ADS  Google Scholar 

  5. Einstein, A.: The Collected Papers of Albert Einstein. Princeton University Press, Princeton (1993)

    Google Scholar 

  6. Einstein, A., Infeld, L.: Evolution of Physics: The Growth of Ideas from Early Concepts to Relativity and Quanta. Simon and Schuster, New York (1961)

    MATH  Google Scholar 

  7. Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777–780 (1935)

    Article  MATH  ADS  Google Scholar 

  8. Khrennikov, A.: In: Roychoudhuri, C., Kracklauer, A.F., Creath, K. (eds.) The Nature of Light: What Are Photons? Proceedings of SPIE, vol. 6664, pp. 666409-1–666409-9. SPIE, San-Diego (2007)

    Google Scholar 

  9. Khrennikov, A.: J. Phys. A, Math. Gen. 38, 9051–9073 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Khrennikov, A.: Phys. Lett. A 357, 171–176 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Khrennikov, A.: Phys. Lett. A 372, 6588–6592 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  12. De la Pena, L., Cetto, A.M.: The Quantum Dice: An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996)

    Google Scholar 

  13. Nieuwenhuizen, Th.M.: In: Adenier, G., Khrennikov, A., Nieuwenhuizen, Th.M. (eds.) Quantum Theory: Reconsideration of Foundations-3. American Institute of Physics, Ser. Conference Proceedings, vol. 810, pp. 198–210. Melville (2006)

  14. Boyer, T.H.: In: Barut, A.O. (ed.) Foundations of Radiation Theory and Quantum Electrodynamics, pp. 141–162. Plenum, New York (1980)

    Google Scholar 

  15. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  16. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  17. Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)

    MATH  Google Scholar 

  18. Davidson, M.: J. Math. Phys. 20, 1865–1870 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  19. Davidson, M.: In: Adenier, G., Fuchs, C., Khrennikov, A. (eds.) Foundations of Probability and Physics-4. American Institute of Physics, Ser. Conference Proceedings, vol. 889, pp. 106–119. Melville (2007)

  20. ‘t Hooft, G.: Quantum mechanics and determinism. hep-th/0105105 (2001)

  21. ’t Hooft, G.: The free-will postulate in quantum mechanics. quant-ph/0701097 (2007)

  22. Elze, T.: The attractor and the quantum states. arXiv:0806.3408 (2008)

  23. Ballentine, L.E.: Rev. Mod. Phys. 42, 358–381 (1970)

    Article  MATH  ADS  Google Scholar 

  24. Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  25. Schrödinger, E.: Proc. Am. Philos. Soc. 124, 323–38 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Khrennikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khrennikov, A. Description of Composite Quantum Systems by Means of Classical Random Fields. Found Phys 40, 1051–1064 (2010). https://doi.org/10.1007/s10701-009-9392-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9392-8

Navigation