Skip to main content
Log in

Emergence of Quantum Mechanics from Theory of Random Fields

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Our aim in this paper is to enlighten the possibility to treat quantum mechanics as emergent from a kind of classical physical model, in spite of recent remarkable experiments demonstrating a violation of the Bell inequality. To proceed in a rigorous way, we use the methodology of ontic–epistemic modeling of physical phenomena. This methodology is rooted in the old Bild conception about theoretical and observational models in physics. This conception was elaborated in the fundamental works of Hertz, Boltzmann, and Schrödinger. Our ontic model (generating the quantum model) is of the random field type, prequantum classical statistical field theory (PCSFT). We present a brief review of its basic features without overloading the presentation by mathematical details. Then we show that the Bell inequality can be violated not only at the epistemic level, i.e., for observed correlations, but even at the ontic level, for classical random fields. We devote the important part of the paper to an analysis of the internal energy structure of prequantum random fields and their coupling with the background field of subquantum fluctuations. Finally, we present a unified picture of the microworld based on the composition of prequantum random fields from elementary fluctuations. Since quantum systems are treated as the symbolic representation of prequantum fields, this picture leads to a unifying treatment of all quantum systems as special blocks of elementary fluctuations carrying negligibly small energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Bell, Physics, 1, 195 (1964).

    Google Scholar 

  2. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press (1987).

  3. B. Hensen, H. Bernien, A. E. Dreau, et al., Nature, 526, 682 (2015).

    Article  ADS  Google Scholar 

  4. M. Giustina, M. A. M. Versteegh, S. Wengerowsky, et al., Phys. Rev. Lett., 115, 250401 (2015).

    Article  ADS  Google Scholar 

  5. L. K. Shalm, E. Meyer-Scott, B. G. Christensen, et al., Phys. Rev. Lett., 115, 250402 (2015).

    Article  ADS  Google Scholar 

  6. S. J. Freedman and J. F. Clauser, Phys. Rev. Lett., 28, 938 (1972).

    Article  ADS  Google Scholar 

  7. A. Aspect, “Three experimental tests of Bell inequalities by the measurement of polarization correlations between photons,” Ph.D. Thesis (Orsay, 1983).

  8. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett., 49, 1804 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  9. G. Adenier and A. Khrennikov, “Test of the no-signaling principle in the Hensen loophole-free CHSH experiment,” arXiv:1606.00784 [quant-ph].

  10. P. Titova and A. Khrennikov, J. Russ. Laser Res., 36, 2 (2015).

    Article  Google Scholar 

  11. A. Khrennikov and I. Volovich, Soft Comput., 10, 521 (2005).

    Article  Google Scholar 

  12. A. Allahverdyan, A. Yu. Khrennikov, and Th. M. Nieuwenhuizen, Phys. Rev. A, 71, 032102-1 (2005).

    Article  ADS  Google Scholar 

  13. A. Khrennikov, J. Phys. A: Math. Gen., 38, 9051 (2005).

    Article  ADS  Google Scholar 

  14. A. Khrennikov, Found. Phys. Lett., 18, 637 (2006).

    Article  Google Scholar 

  15. A. Khrennikov, Eur. Phys. Lett., 88, 40005.1-6 (2009).

    Article  Google Scholar 

  16. A. Khrennikov, M. Ohya, and N. Watanabe, J. Russ. Laser Res., 31, 462 (2010).

    Article  Google Scholar 

  17. A. Khrennikov, M. Ohya, and N. Watanabe, Int. J. Quantum Inform., 9, 281 (2011).

    Article  Google Scholar 

  18. A. Khrennikov, Phys. Scr., 84, 045014 (2011).

    Article  ADS  Google Scholar 

  19. A. Khrennikov, Beyond Quantum, Pan Stanford Publ., Singapore (2014).

    Book  MATH  Google Scholar 

  20. L. De la Pena, J. Math. Phys., 10, 1620 (1969).

    Article  ADS  Google Scholar 

  21. L. De la Pena, Found. Phys., 12, 1017 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  22. L. De la Pena and A. M. Cetto, The Quantum Dice: An Introduction to Stochastic Electrodynamics, Kluwer Academic Publ., Dordrecht (1996).

    Book  Google Scholar 

  23. L. De la Pena and A. M. Cetto, J. Phys.: Conf. Ser. 701, 012008 (2016).

    Google Scholar 

  24. V. I. Man’ko, J. Russ. Laser Res., 17, 579 (1996).

    Article  Google Scholar 

  25. O. V. Man’ko and V. I. Man’ko, J. Russ. Laser Res., 25, 477 (2004).

    Article  Google Scholar 

  26. V. I. Man’ko and E. V. Shchukin, J. Russ. Laser Res., 22, 545 (2001).

    Article  Google Scholar 

  27. M. A. Man’ko, V. I. Man’ko, and R. V. Mendes, J. Russ. Laser Res., 27, 507 (2006).

    Article  Google Scholar 

  28. V. I. Man’ko and I. V. Traskunov, J. Russ. Laser Res., 33, 269 (2012).

    Article  Google Scholar 

  29. M. A. Man’ko, V. I. Man’ko, G. Marmo, et al., J. Russ. Laser Res., 35, 79 (2014).

    Article  Google Scholar 

  30. G. Groessing, S. Fussy, J. M. Pascasio, and H. Schwabl, Ann. Phys., 353, 271 (2015).

    Article  ADS  Google Scholar 

  31. B. R. La Cour, Found. Phys., 44, 1059 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  32. B. R. La Cour, C. I. Ostrove, G. E. Ott, et al., Int. J. Quantum Inform., 14, 1640004 (2016).

    Article  Google Scholar 

  33. H. Atmanspacher and H. Primas, “Epistemic and ontic quantum realities,” in: Foundations of Probability and Physics-3, AIP Conf. Proc., Melville, New York (2005), Vol. 750, p. 49.

  34. S. D’Agostino, Phys. Perspect., 6, 372 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  35. S. D’Agostino, “Continuity and completeness in physical theory: Schrödinger’s return to the wave interpretation of quantum mechanics in the 1950’s,” in: M. Bitbol and O. Darrigol (Eds.), E. Schrödinger: Philosophy and the Birth of Quantum Mechanics, Editions Frontieres, Gif-sur-Yvette (1992), p. 339.

  36. A. Khrennikov, “After Bell,” arXiv:1603.08674 [quant-ph].

  37. A. Khrennikov, J. Mod. Opt., 59, 667 (2012).

    Article  ADS  Google Scholar 

  38. A. Khrennikov, Prog. Theor. Phys., 128, 31 (2012).

    Article  ADS  Google Scholar 

  39. A. Khrennikov, B. Nilsson, and S. Nordebo, J. Phys.: Conf. Ser., 361, 012030 (2012).

    Google Scholar 

  40. A. Khrennikov, B. Nilsson, and S. Nordebo, Int. J. Quantum Inform., 10, 1241014 (2012).

    Article  ADS  Google Scholar 

  41. A. Khrennikov, B. Nilsson, and S. Nordebo, Theor. Math. Phys., 174, 298 (2013).

    Article  Google Scholar 

  42. A. Khrennikov, “Einstein’s dream,” in: A. F. Kracklauer and K. Creath (Eds.), The Nature of Light: What Are Photons?, SPIE Proc., 6664, 666409-1 (2007).

  43. A. Einstein and I. Infeld, Evolution of Physics: The Growth of Ideas from Early Concepts to Relativity and Quanta, Simon and Schuster, New York (1961).

    MATH  Google Scholar 

  44. A. Khrennikov, Quantum Probability Series QP-PQ, 29, 200 (2013).

    Google Scholar 

  45. A. V. Skorohod, Integration in Hilbert Space, Springer, Berlin (1974).

    Book  Google Scholar 

  46. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000).

  47. H. Wiseman, Nature, 526, 649 (2015).

    Article  ADS  Google Scholar 

  48. A. Aspect, Physics, 8, 123 (2015).

    Article  Google Scholar 

  49. A. Khrennikov, Contextual Approach to Quantum Formalism, Springer, Berlin-Heidelberg-New York (2009).

    Book  MATH  Google Scholar 

  50. M. Kupczynski, Phys. Lett. A, 121, 205 (1987).

    Article  ADS  Google Scholar 

  51. J. von Neuman, Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955).

  52. L. E. Ballentine, Rev. Mod. Phys., 42, 358 (1989).

    Article  ADS  Google Scholar 

  53. L. E. Ballentine, Quantum Mechanics, Prentice Hall, Englewood Cliffs, NJ (1989).

    MATH  Google Scholar 

  54. L. E. Ballentine, Quantum Mechanics: A Modern Development, World Scientific, Singapore (1998).

    Book  MATH  Google Scholar 

  55. L. E. Ballentine, “Interpretations of probability and quantum theory,” in: A. Yu. Khrennikov (Ed.), Foundations of Probability and Physics, Quantum Probability and White Noise Analysis, World Scientific, Singapore (2001), Vol. 13, p. 71.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Khrennikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrennikov, A. Emergence of Quantum Mechanics from Theory of Random Fields. J Russ Laser Res 38, 9–26 (2017). https://doi.org/10.1007/s10946-017-9616-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-017-9616-x

Keywords

Navigation