Skip to main content
Log in

Type-Decomposition of an Effect Algebra

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Effect algebras (EAs), play a significant role in quantum logic, are featured in the theory of partially ordered Abelian groups, and generalize orthoalgebras, MV-algebras, orthomodular posets, orthomodular lattices, modular ortholattices, and boolean algebras.

We study centrally orthocomplete effect algebras (COEAs), i.e., EAs satisfying the condition that every family of elements that is dominated by an orthogonal family of central elements has a supremum. For COEAs, we introduce a general notion of decomposition into types; prove that a COEA factors uniquely as a direct sum of types I, II, and III; and obtain a generalization for COEAs of Ramsay’s fourfold decomposition of a complete orthomodular lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beran, L.: Orthomodular Lattices, an Algebraic Approach. Mathematics and Its Applications, vol. 18. Reidel, Dordrecht (1985). ISBN 90-277-1715-X

    Google Scholar 

  2. Busch, P., Lahti, P., Mittelstaedt, P.: The Quantum Theory of Measurement, 2nd edn. Lecture Notes in Physics, New Series M: Monographs, vol. 2. Springer, Berlin (1996). ISBN 3-540-61355-2

    MATH  Google Scholar 

  3. Carrega, J.C., Chevalier, G., Mayet, R.: Direct decompositions of orthomodular lattices. Algebra Universalis 27, 480–496 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, C.: Algebraic analysis of many-valued logic. Trans. Am. Math. Soc. 88, 467–490 (1958)

    MATH  Google Scholar 

  5. Chevalier, G.: Around the relative center property in orthomodular lattices. Proc. Am. Math. Soc. 112(4), 935–948 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cignoli, R., D’Ottaviano, I., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic—Studia Logica Library, vol. 7. Kluwer Academic, Dordrecht (2000). ISBN 0-7923-6009-5

    MATH  Google Scholar 

  7. Dixmier, J.: Les Algèbres d’Opérateurs dans l’Espace Hilbertien. Fascicule XXV. Gautheir-Villars, Paris (1957)

    MATH  Google Scholar 

  8. Dvurec̆enskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer, Dordrecht (2000), ISBN 0-7923-6471-6

    Google Scholar 

  9. Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24(10), 1331–1352 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  10. Foulis, D.J., Greechie, R.J.: Rüttimann, filters and supports in orthoalgebras. Int. J. Theor. Phys. 31(5), 789–807 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Foulis, D.J., Greechie, R.J.: Quantum logic and partially ordered Abelian groups. In: Handbook of Quantum Logic and Quantum Structures. Elsevier, Amsterdam (2007). ISBN 10 0-444-52870-9

    Google Scholar 

  12. Foulis, D.J., Pulmannová, S.: Centrally orthocomplete effect algebras. To appear in Algebra Universalis

  13. Grätzer, G.: General Lattice Theory. Academic Press, New York (1979). ISBN 0-12-195750-4

    Google Scholar 

  14. Greechie, R.J., Foulis, D.J., Pulmannovȧ, S.: The center of an effect algebra. Order 12, 91–106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harding, J.: Regularity in quantum logic. Int. J. Theor. Phys. 37(4), 1173–1212 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jenča, G., Pulmannová, S.: Orthocomplete effect algebras. Proc. Am. Math. Soc. 131, 2663–2671 (2003)

    Article  MATH  Google Scholar 

  17. Kalmbach, G.: Orthomodular Lattices. Academic Press, London/New York (1983). ISBN 0-12-394580-1

    MATH  Google Scholar 

  18. Kalmbach, G.: Measures and Hilbert Lattices. World Scientific, Singapore (1986). ISBN 9971-50-009-4

    MATH  Google Scholar 

  19. Kaplansky, I.: Projections in Banach algebras. Ann. Math. 53(2), 235–249 (1951)

    Article  MathSciNet  Google Scholar 

  20. Kaplansky, I.: Any orthocomplemented complete modular lattice is a continuous geometry. Ann. Math. 61(2), 524–541 (1955)

    Article  MathSciNet  Google Scholar 

  21. Kaplansky, I.: Rings of Operators. Benjamin, New York/Amsterdam (1968)

    MATH  Google Scholar 

  22. Loomis, L.H.: The Lattice Theoretic Background of the Dimension Theory of Operator Algebras. Memoirs of AMS, vol. 18. AMS, Providence (1955)

    Google Scholar 

  23. Maeda, S.: Dimension functions on certain general lattices. J. Sci. Hiroshima Univ. A 19, 211–237 (1955)

    MATH  Google Scholar 

  24. Mittelstaedt, P.: The Interpretation of Quantum Mechanics and the Measurement Process. Cambridge University Press, Cambridge (1998). ISBN 0-521-55445-4

    MATH  Google Scholar 

  25. Mittelstaedt, P.: Quantum physics and classical physics—in the light of quantum logic. Int. J. Theor. Phys. 44(7), 771–781 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Murray, F.J., von Neumann, J.: On rings of operators. In: J. von Neumann Collected Works, vol. III, pp. 6–321. Pergamon Press, Oxford (1961)

    Google Scholar 

  27. Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer Academic, Dordrecht/Boston/London (1991). ISBN 0-7923-1207-4

    MATH  Google Scholar 

  28. Pulmannová, S.: Effect algebras with the Riesz decomposition property and AF C*-algebras. Found. Phys. 29(9), 1389–1401 (1999)

    Article  MathSciNet  Google Scholar 

  29. Ramsay, A.: Dimension theory in complete weakly modular orthocomplemented lattices. Trans. Am. Math. Soc. 116, 9–31 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  30. Riecanová, Z.: Sharp elements in effect algebras. Int. J. Theor. Phys. 40(5), 913–920 (2001)

    Article  MATH  Google Scholar 

  31. Riecanová, Z.: States, uniformities and metrics on lattice effect algebras. Operations for uncertainty modelling (Liptovsky Mikulas, 2002). Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(suppl.), 125–133 (2002)

    Article  MATH  Google Scholar 

  32. Sikorski, R.: Boolean Algebras, 2nd edn. Academic Press/Springer, New York/Berlin (1964)

    MATH  Google Scholar 

  33. Topping, D.M.: Jordan Algebras of Self-Adjoint Operators. AMS Memoir, vol. 53. AMS, Providence (1965)

    Google Scholar 

  34. Topping, D.M.: Asymptoticity and semimodularity in projection lattices. Pac. J. Math. 20(2), 317–325 (1967)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Foulis.

Additional information

Dedicated to Professor Dr. Peter Mittelstaedt with admiration for his profound work on quantum logic, quantum measurement theory, and the philosophy of quantum mechanics.

S. Pulmannová was supported by Research and Development Support Agency under the contract No. APVV-0071-06, grant VEGA 2/6088/26 and Center of Excellence SAS, CEPI I/2/2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foulis, D.J., Pulmannová, S. Type-Decomposition of an Effect Algebra. Found Phys 40, 1543–1565 (2010). https://doi.org/10.1007/s10701-009-9344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9344-3

Keywords

Navigation