Skip to main content
Log in

Perfect Effect Algebras and Spectral Resolutions of Observables

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We study perfect effect algebras, that is, effect algebras with the Riesz decomposition property where every element belongs either to its radical or to its co-radical. We define perfect effect algebras with principal radical and we show that the category of such effect algebras is categorically equivalent to the category of unital po-groups with interpolation. We introduce an observable on a \(\hbox {Rad}\)-monotone \(\sigma \)-complete perfect effect algebra with principal radical and we show that observables are in a one-to-one correspondence with spectral resolutions of observables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  2. Belluce, L.P., Di Nola, A.: Yosida type representation for perfect MV-algebras. Math. Logic Q. 42, 551–563 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–834 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buhagiar, D., Chetcuti, E., Dvurečenskij, A.: Loomis–Sikorski representation of monotone \(\sigma \)-complete effect algebras. Fuzzy Sets Syst. 157, 683–690 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Catlin, D.: Spectral theory in quantum logics. Int. J. Theor. Phys. 1, 285–297 (1968)

    Article  MathSciNet  Google Scholar 

  6. Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 88, 467–490 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publ, Dordrecht (2000)

    Book  MATH  Google Scholar 

  8. Di Nola, A., Grigolia, R.: Gödel spaces and perfect MV-algebras. J. Appl. Log. 13, 270–284 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Di Nola, A., Lettieri, A.: Perfect MV-algebras are categorically equivalent to abelian \(\ell \)-groups. Studi. Log. 53, 417–432 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dvurečenskij, A.: Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups. J. Austral. Math. Soc. 82, 183–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dvurečenskij, A.: Representable effect algebras and observables. Int. J. Theor. Phys. 53, 2855–2866 (2014). https://doi.org/10.1007/s10773-014-2083-z

    Article  MathSciNet  MATH  Google Scholar 

  12. Dvurečenskij, A.: Lexicographic effect algebras. Algebra Univers. 75, 451–480 (2016). https://doi.org/10.1007/s00012-016-0374-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Dvurečenskij, A.: Quantum observables and effect algebras. Int. J. Theor. Phys. 57, 637–651 (2018). https://doi.org/10.1007/s10773-017-3594-1

    Article  MathSciNet  MATH  Google Scholar 

  14. Dvurečenskij, A., Kuková, M.: Observables on quantum structures. Inf. Sci. 262, 215–222 (2014). https://doi.org/10.1016/j.ins.2013.09.014

    Article  MathSciNet  MATH  Google Scholar 

  15. Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publishers/Ister Science, Dordrecht/Bratislava (2000)

    Book  MATH  Google Scholar 

  16. Foulis, D.J.: MV and Heyting effect algebras. Found. Phys. 30, 1687–1706 (2000)

    Article  MathSciNet  Google Scholar 

  17. Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1325–1346 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Goodearl, K.R.: Partially Ordered Abelian Groups with Interpolation. Mathematical Surveys and Monographs No. 20. The American Mathematical Society, Providence (1986)

    Google Scholar 

  19. Halmos, P.R.: Measure Theory. Springer, Berlin (1974)

    MATH  Google Scholar 

  20. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (1997)

    MATH  Google Scholar 

  21. Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1971)

    Book  MATH  Google Scholar 

  22. Mundici, D.: Interpretation of AF \(C^*\)-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ravindran, K.: On a structure theory of effect algebras, PhD thesis, Kansas State Univ., Manhattan, Kansas, (1996)

  24. Varadarajan, V.S.: Geometry of Quantum Theory, vol. 1. van Nostrand, Princeton, NJ (1968)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very indebted to anonymous referees for their careful reading and suggestions which helped us to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatolij Dvurečenskij.

Additional information

Dedicated to the memory of Paul Busch, an outstanding scholar, pianist and a nice man.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The paper has been supported by the Grant of the Slovak Research and Development Agency under Contract APVV-16-0073 and the Grant VEGA No. 2/0069/16 SAV.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvurečenskij, A. Perfect Effect Algebras and Spectral Resolutions of Observables. Found Phys 49, 607–628 (2019). https://doi.org/10.1007/s10701-019-00238-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-019-00238-2

Keywords

Mathematics Subject Classification

Navigation