Skip to main content

Advertisement

Log in

From Dark Energy & Dark Matter to Dark Metric

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We present a new approach to the mathematical objects of General Relativity in terms of which a generic f(R)-gravity theory gravitation is written in a first-order (à la Palatini) formalism, and introduce the concept of Dark Metric which could bypass the emergence of disturbing concepts as Dark Energy and Dark Matter. These issues are related to the fact that General Relativity could not be the definitive theory of Gravitation due to several shortcomings that come out both from theoretical and experimental viewpoints. At large scales, the attempts to match it with the recent observational data lead to invoke Dark Energy and Dark Matter as the bulk components of the cosmic fluid. Since no final evidence, at fundamental level, exists for such ingredients, it could be useful to reconsider the gravitational sector in order to see if suitable extensions of General Relativity could solve the shortcomings present at infrared scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alimi, J.-M., Füzfa, A.: The abnormally weighting energy hypothesis: the missing link between dark matter and dark energy. arXiv:0804.4100

  2. Allemandi, G., Francaviglia, M.: The variational approach to alternative theories of gravity, KARP-2006-02, 2007. In: 42nd Karpacz Winter School of Theoretical Physics: Current Mathematical Topics in Gravitation and Cosmology, Ladek, Poland, 6–11 Feb. 2006. Published in eConf C0602061:02, 2006

  3. Allemandi, G., Francaviglia, M.: The variational approach to alternative theories of gravity. Int. J. Geom. Methods Mod. Phys. 4, 1–23 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Capozziello, S., Francaviglia, M.: Extended theories of gravitation and their cosmological and astrophysical applications. Gen. Relativ. Gravit. 40(2–3), 357–420 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Capozziello, S., Cardone, V.F., Troisi, A.: Dark energy and dark matter as curvature effects? J. Cosmol. Astropart. Phys. 08, 001–14 (2006)

    Article  ADS  Google Scholar 

  6. Eddington, A.: The Mathematical Theory of Relativity. Cambridge University Press, Cambridge (1923)

    MATH  Google Scholar 

  7. Ehlers, J., Pirani, F.A.E., Schild, A.: The geometry of free fall and the light propagation. In: Studies in Relativity: Papers in honour of J.L. Synge, pp. 63–84 (1972)

  8. Einstein, A.: Zur Elektrodynamic der bewegter Körper. Ann. Phys. XVII, 891–921 (1905)

    Article  ADS  Google Scholar 

  9. Ferraris, M.: In: Atti del VI Convegno Nazionale di Relativita Generale e Fisica della Gravitazione, Firenze (1984)

  10. Ferraris, M., Francaviglia, M., Reina, C.: Variational formulation of general relativity from 1915 to 1925 “Palatini’s method” discovered by Einstein in 1925. Gen. Relativ. Gravit. 14, 243–254 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Ferraris, M., Francaviglia, M., Volovich, I.: Universality of Einstein equations. Class. Quantum Gravity 11(6), 1505–1517 (1994). gr-qc/9303007

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Jakubiec, A., Kijowski, J.: On theories of gravitation with nonlinear Lagrangians. Phys. Rev. D 37, 1406 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  13. Jakubiec, A., Kijowski, J.: On the universality of linear Lagrangians for gravitational field. J. Math. Phys. 30, 1073 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Kijowski, J.: Gen. Relativ. Gravit. 9, 857 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Koivisto, T.: Covariant conservation of energy-momentum in modified gravity. Class. Quantum Gravity 23, 4289 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Levi-Civita, T.: The Absolute Differential Calculus. Blackie, Glasgow (1929)

    Google Scholar 

  17. Magnano, G., Ferraris, M., Francaviglia, M.: Nonlinear gravitational Lagrangians. Gen. Relativ. Gravit. 19(5), 465–479 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Magnano, G., Ferraris, M., Francaviglia, M.: Legendre transformation and dynamical structure of higher-derivative gravity. Class. Quantum Gravity 7, 557–570 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Sakharov, A.D.: Vacuum quantum fluctuations in curved space and the theory of gravitation. Dokl. Akad. Nauk SSSR 70, 177 (1967)

    Google Scholar 

  20. Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity (2008). arXiv:0805.1726

  21. Utiyama, R., DeWitt, B.S.: Renormalization of a classical gravitational field interacting with quantized matter fields. J. Math. Phys. 3, 608 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Weyl, H.: Eine neue Erweiterung der Relativitätstheorie. Ann. Phys. 364, 101 (1919)

    Article  Google Scholar 

  23. Will, C.M.: Confrontation between general relativity and experiments. Living Rev. Relativ. 9, 3 (2005)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mercadante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capozziello, S., De Laurentis, M., Francaviglia, M. et al. From Dark Energy & Dark Matter to Dark Metric. Found Phys 39, 1161–1176 (2009). https://doi.org/10.1007/s10701-009-9332-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9332-7

Keywords

Navigation