Skip to main content
Log in

Charge, Geometry, and Effective Mass

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Charge, like mass in Newtonian mechanics, is an irreducible element of electromagnetic theory that must be introduced ab initio. Its origin is not properly a part of the theory. Fields are then defined in terms of forces on either masses—in the case of Newtonian mechanics, or charges in the case of electromagnetism. General Relativity changed our way of thinking about the gravitational field by replacing the concept of a force field with the curvature of space-time. Mass, however, remained an irreducible element. It is shown here that the Reissner-Nordström solution to the Einstein field equations tells us that charge, like mass, has a unique space-time signature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reissner, H.: Über die Eigengravitation des elektrischen Feldes nach der Einstein’schen Theorie. Ann. Phys. 50, 106–120 (1916)

    Article  Google Scholar 

  2. Nordström, G.: On the energy of the gravitational field in Einstein’s theory. Verh. K. Ned. Akad. Wet. Afd. Natuurkd. 26, 1201–1208 (1918)

    Google Scholar 

  3. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973), pp. 156–161

    MATH  Google Scholar 

  4. Henry, R.C.: Kretschmann scalar for a Kerr-Neuman black hole. Astrophys. J. 535, 350–353 (2000)

    Article  ADS  Google Scholar 

  5. de la Cruz, V., Israel, W.: Gravitational bounce. Nuovo Cimento 51, 744 (1967)

    Article  ADS  Google Scholar 

  6. Cohen, J.M., Gautreau, D.G.: Naked singularities, event horizon, and charged particles. Phys. Rev. D 19, 2273–2279 (1979)

    Article  ADS  Google Scholar 

  7. Hiscock, W.A.: On the topology of charged spherical collapse. J. Math. Phys. 22, 215 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  8. de Felice, F., Clarke, C.J.S.: Relativity on Curved Manifolds. Cambridge University Press, Cambridge (1992), pp. 369–372

    MATH  Google Scholar 

  9. Synge, J.L.: Relativity: The General Theory. North-Holland, Amsterdam (1966), Chap. VII, §5 and Chap. X, §4

    Google Scholar 

  10. Gautreau, R., Hoffman, R.B.: The structure of the sources of Weyl-type electrovac fields in general relativity. Nuovo Cimento 16, 162–171 (1973)

    Article  Google Scholar 

  11. Whittaker, E.T.: On Gauss theorem and the concept of mass in general relativity. Proc. R. Soc. Lond. A 149, 384 (1935)

    Article  MATH  ADS  Google Scholar 

  12. Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, pp. 227–265. Wiley, New York (1962)

    Google Scholar 

  13. Eisenhart, L.P.: Riemannian Geometry. Princeton University Press, Princeton (1997), p. 41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald E. Marsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsh, G.E. Charge, Geometry, and Effective Mass. Found Phys 38, 293–300 (2008). https://doi.org/10.1007/s10701-008-9209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-008-9209-1

Keywords

Navigation