Skip to main content
Log in

Classical Electromagnetic Potential as a Part of Gravitational Connection: Ideas and History

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We consider a natural form of a unified theory of gravity and electromagnetism which was somehow missed at the time of intense search for such a unification. The basic idea of this unification is to use the symmetric metric and a non-symmetric connection as independent variables, which generalizes the so-called Palatini formalism. For the first time this idea was applied to the construction of the action for a unified theory of gravity and electromagnetism without matter only in 1978, but this result did not receive wide recognition. In this paper we propose a natural way to include matter in the form of classical particles into the unified theory. The trace of connection in the appearing theory can be naturally identified with the electromagnetic potential, and the Einstein-Maxwell equations with classical matter are reproduced. We compare this approach with the known ideas of unification and briefly discuss the perspectives of a further development of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Cartan, Riemannian Geometry in an Orthogonal Frame (World Scientific, 2001).

    Book  MATH  Google Scholar 

  2. T. Regge and C. Teitelboim, “General relativity à la string: a progress report,” in Proceedings of the First Marcel Grossmann Meeting, Trieste, Italy, 1975 (Ed. R. Ruffini, North Holland, Amsterdam, 1977), p. 77–88; arXiv: 1612.05256.

    Google Scholar 

  3. S. A. Paston and V. A. Franke, Theor. Math. Phys. 153, 1582–1596 (2007); arXiv: 0711.0576.

    Article  Google Scholar 

  4. A. Palatini, Rendiconti del Circolo Matematico di Palermo (1884–1940) 43, 203–212 (1919).

    Article  Google Scholar 

  5. M. Ferraris, M. Francaviglia, and C. Reina, Gen. Rel. Grav. 14, 243–254 (1982).

    Article  ADS  Google Scholar 

  6. A. Einstein, Sitzungsber. Preuss. Akad.Wiss., phys.-math. Kl., 414–419 (1925).

    Google Scholar 

  7. Yu. N. Obukhov, V. G. Krechet, and V. N. Ponomarev, Gravitaciya i teoriya otnositelnosti [Gravitation and Theory of Relativity] 14-15, 121–127 (1978) (in Russian).

    ADS  Google Scholar 

  8. Yu. Obukhov and V. N. Ponomariov, Gen. Rel. Grav. 14, 309–330 (1982).

    Article  ADS  Google Scholar 

  9. Tomas Ortin, Gravity and Strings (Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2004).

  10. V. D. Sandberg, Phys. Rev. D 12 3013–3018 (1975).

    Article  ADS  Google Scholar 

  11. R. J. McKellar, Phys. Rev. D 20 356–361 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  12. N. Poplawski, “A unified, purely affine theory of gravitation and electromagnetism,” arXiv: 0705.0351.

  13. A. Einstein and B. Kaufman, Ann. Math. 62, 128–138 (1955).

    Article  MathSciNet  Google Scholar 

  14. F.W. Hehl and G. D. Kerlick, Gen. Rel. Grav. 9, 691–710 (1978).

    Article  ADS  Google Scholar 

  15. A. Einstein, Relativistic Theory of the nonsymmetric field (Princeton, 1955), p. 267–273.

    Google Scholar 

  16. V. P. Vizgin, Unified Field Theories in the First Third of the 20th Century (Birkhauser, Basel, 1994).

    Book  MATH  Google Scholar 

  17. M. A. Tonnelat, Les theories unitaires de l’electromagnetisme et de la gravitation (Gauthier-Villars, 1965, in French).

    MATH  Google Scholar 

  18. H. Goenner, Living Reviews in Relativity 7, 2 (2004).

    Article  ADS  Google Scholar 

  19. H. Goenner, Living Reviews inRelativity 17, 5 (2014).

    Article  ADS  Google Scholar 

  20. H. Weyl, Math. Z. 2, 384–411 (1918) (in German).

    Article  MathSciNet  Google Scholar 

  21. H. Weyl, Raum, Zeit, Materie (Springer, 1923, in German).

    Book  MATH  Google Scholar 

  22. A. S. Eddington, Proc. Roy. Soc. London A: Math., Phys. Eng. Sciences, 99 (697), 104–122 (1921).

    Article  ADS  Google Scholar 

  23. J. A. Schouten, Proc. K. Akad. Wetensch. 26, 850–857 (1923).

    Google Scholar 

  24. A. Friedmann and J. A. Schouten, Math. Z. 21, 211–223 (1924).

    Article  MathSciNet  Google Scholar 

  25. M. Ferraris and J. Kijowski, Gen. Rel. Grav. 14, 37–47 (1982).

    Article  ADS  Google Scholar 

  26. K. Borchsenius, Gen. Rel. Grav. 7, 527–534 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. XVII 137–140 (1923).

    Google Scholar 

  28. H. Eyraud, C. R. Acad. Sci. 180, 127–129 (1925).

    Google Scholar 

  29. F. W. Hehl et al., Found. Phys. 19, 1075–1100 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  30. F.W. Hehl, Phys. Rep. 258, 1–171 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  31. S. A. Paston, Phys. Rev. D 96, 084059 (2017); arXiv: 1708.03944.

    Article  ADS  Google Scholar 

  32. K. Horie, “Geometric interpretation of electromagnetism in a gravitational theory with space–time torsion,” hep-th/9409018.

  33. K. Horie, “Geometric interpretation of electromagnetism in a gravitational theory with torsion and spinorial matter,” hep-th/9601066.

  34. J. M. Overduin and P. S. Wesson, Phys. Rep. 283, 303–378 (1997).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Paston.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharuk, N.V., Paston, S.A. & Sheykin, A.A. Classical Electromagnetic Potential as a Part of Gravitational Connection: Ideas and History. Gravit. Cosmol. 24, 209–219 (2018). https://doi.org/10.1134/S0202289318030076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289318030076

Navigation