Skip to main content
Log in

The Tensors of the Averaged Relative Energy–Momentum and Angular Momentum in General Relativity and Some of Their Applications

  • Published:
Foundations of Physics Aims and scope Submit manuscript

There exist different kinds of averaging of the differences of the energy–momentum and angular momentum in normal coordinates NC(P) which give tensorial quantities. The obtained averaged quantities are equivalent mathematically because they differ only by constant scalar dimensional factors. One of these averaging was used in our papers [J. Garecki, Rep. Math. Phys. 33, 57 (1993); Int. J. Theor. Phys. 35, 2195 (1996); Rep. Math. Phys. 40, 485 (1997); J. Math. Phys. 40, 4035 (1999); Rep. Math. Phys. 43, 397 (1999); Rep. Math. Phys. 44, 95 (1999); Ann. Phys. (Leipzig) 11, 441 (2002); M.P. Dabrowski and J. Garecki, Class. Quantum. Grar. 19, 1 (2002)] giving the canonical superenergy and angular supermomentum tensors. In this paper we present another averaging of the differences of the energy–momentum and angular momentum which gives tensorial quantities with proper dimensions of the energy–momentum and angular momentum densities. We have called these tensorial quantities “the averaged relative energy–momentum and angular momentum tensors”. These tensors are very closely related to the canonical superenergy and angular supermomentum tensors and they depend on some fundamental length L  >  0. The averaged relative energy–momentum and angular momentum tensors of the gravitational field obtained in the paper can be applied, like the canonical superenergy and angular supermomentum tensors, to coordinate independent analysis (local and in special cases also global) of this field. Up to now we have applied the averaged relative energy–momentum tensors to analyze vacuum gravitational energy and momentum and to analyze energy and momentum of the Friedman (and also more general, only homogeneous) universes. The obtained results are interesting, e.g., the averaged relative energy density is positive definite for the all Friedman and other universes which have been considered in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garecki J. (1993) . Rep. Math. Phys. 33, 57

    Article  MATH  MathSciNet  Google Scholar 

  2. Garecki J. (1996) Int. J. Theor. Phys. 35: 2195

    Article  MATH  MathSciNet  Google Scholar 

  3. Garecki J. (1997). Rep. Math. Phys. 40, 485

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Garecki J. (1999) . J. Math. Phys. 40: 4035

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Garecki J. (1999) . Rep. Math. Phys. 43, 397

    MathSciNet  ADS  Google Scholar 

  6. Garecki J. (1999) . Rep. Math. Phys. 44, 95

    Article  MATH  MathSciNet  Google Scholar 

  7. Garecki J. (2002) . Ann. Phys. (Leipzig) 11, 441

    ADS  MathSciNet  Google Scholar 

  8. Da̧browski M.P., Garecki J. (2002) . Class. Quantum. Grav. 19, 1

    Article  ADS  MathSciNet  Google Scholar 

  9. Mashhoon B. et al. (1997) . Phys. Lett. A 231, 47

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Mashhoon B. et al. (1999) . Class. Quant. Grav. 16: 1137

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. B. Mashhoon, in Proc. Spanish Relativity Meeting, J.F. Pascual, S. L. Floría, A. San Miguel, and F. Vincente eds. (World Scientific, Singapore, 2001) (preprint: gr-qc/0011014).

  12. B. Mashhoon, preprint: gr-qc/0311030.

  13. Garecki J. (1978). Zeszyty Naukowe WSP Szczecin 26: 25 (in Polish, summary in English).

    MathSciNet  Google Scholar 

  14. Bergmann P.G., Thomson R. (1953) . Phys. Rev. 89, 401

    ADS  MathSciNet  Google Scholar 

  15. Garecki J. (2001) . Grav. Cosmol. 7, 1

    MathSciNet  Google Scholar 

  16. Landau L.D., Lifschitz E.M. (1975) . The Classical Theory of Fields. Pergamon, Oxford

    Google Scholar 

  17. Szabados L.B. (1992) . Class. Quant. Grav. 9: 2521

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Szabados L.B. (2004) . Living Rev. Rel. 7, 4

    Google Scholar 

  19. A. Ashtekar, preprint: gr-qc/9901023.

  20. A. Ashtekar, preprint: gr-qc/0112038.

  21. Muxin Han et al., preprint: gr-qc/0509064.

  22. Rovelli C. (2004) . Quantum Gravity. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  23. Thiemann T (2003) Lect. Notes Phys. 631, 41 (preprint: gr-qc/0210094).

    ADS  MathSciNet  Google Scholar 

  24. A. Ashtekar, preprint: math-ph/0202008.

  25. Bojowald M. (2005) Living Rev. Rel. 8, 11 (preprint: gr-qc/0601085).

    Google Scholar 

  26. Ashtekar A., Lewandowski J. (2004) Class. Quant. Grav. 21, R53 (preprint: gr-qc/0404018).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. L. Smolin, preprint: hep-th/0303185.

  28. Ashtekar A. (2005) New J. Phys. 7, 198 (preprint: gr-qc/0410054).

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Perez, preprint: gr-qc/0409061.

  30. Albrow M.G. (1973) . Nature 241, 56

    ADS  Google Scholar 

  31. Tryon E.P. (1973) . Nature 246, 396

    Article  ADS  Google Scholar 

  32. Cooperstock F.I. (1992) . Found. Phys. 22: 1011

    MathSciNet  ADS  Google Scholar 

  33. Cooperstock F.I. (2000) . Ann. Phys.(N.Y.) 282, 115

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. S. S. Xulu, preprint: hep-th/0308077.

  35. Bringley T. (2002) Mod. Phys. Lett. A 17, 157 (preprint: gr-qc/0204006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Gad R.M. (2005) Astrophys. Space Sci. 95, 451 (preprint: gr-qc/0307010).

    Article  ADS  Google Scholar 

  37. Bonnor W.B. (2000) . Gen. Relat. Gravit. 32: 1627

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Garecki J. (2005) Class. Quant. Grav. 22: 4051 (preprint: gr-qc/0410013).

    Article  ADS  MathSciNet  Google Scholar 

  39. Misner Ch.W., Thorne K.S., Wheeler J.A. (1973) . Gravitation. Freeman, San Francisco

    Google Scholar 

  40. Rosen N. (1994) . Gen. Relat. Gravit. 26, 319

    Article  ADS  Google Scholar 

  41. Johri V.B. et al. (1995) . Gen. Relat. Gravit. 27, 313

    Article  MathSciNet  ADS  Google Scholar 

  42. Banerjee N., Sen S. (1997) . Pramana J. Phys. 49, 609

    Article  ADS  Google Scholar 

  43. S. S. Xulu, preprint: hep-th/0308070.

  44. Salti M., Ali Havare (2005) Int. J. Mod. Phys. A 20: 2169 (preprint: gr-qc/0502060).

    Article  ADS  Google Scholar 

  45. Salti M. et al. (2005) Astrophys. Space Sci. 299, 227 (preprint: gr-qc/0505079).

    Article  MATH  ADS  Google Scholar 

  46. Salti M. (2005) Mod. Phys. Lett. A 20: 2175 (preprint: gr-qc/0505078).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Salti M. (2005) Nuovo Cim. B 120, 53 (preprint: gr-qc/0506061).

    ADS  MathSciNet  Google Scholar 

  48. Salti M. (2006) Czech. J. Phys. 56, 177 (preprint: gr-qc/0511095).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. O. Aydogdu,“Gravitational energy–momentum Density in Bianchi Type II Spacetimes”, accepted for publication in Int. J. Mod. Phys. D (preprint: gr-qc/0509047).

  50. Aydogdu O. (2006) Fortsch. Phys. 54, 246 (preprint: gr-qc/0602070).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. A. Trautman, in Gravitation: An Introduction to Current Problems, L. Witten, ed. (Wiley New York-London, 1962).

  52. J. Goldberg, in General Relativity and Gravitation, A. Held, ed. (Plenum Press, New York, 1980).

  53. Komar A. (1959) . Phys. Rev. 113, 934

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. Komar A. (1962) . Phys. Rev. 127: 1411

    Article  MATH  ADS  MathSciNet  Google Scholar 

  55. Garecki J. (1995) . Gen Relat. Gravit. 27, 55

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. Katz J. et al. (1997) Phys. Rev. D 55: 5957 (preprint: gr-qc/0504041).

    Article  ADS  MathSciNet  Google Scholar 

  57. M. Salti et al., preprint: gr-qc/0502042.

  58. P. Halpern, preprint: gr-qc/0606095.

  59. Radinschi I. (2000) . Fizika B (Zagreb) 9, 203

    ADS  Google Scholar 

  60. O. Aydogdu et al., preprint: gr-qc/0601133.

  61. M. S. Berman, preprint: gr-qc/0605063.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Garecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garecki, J. The Tensors of the Averaged Relative Energy–Momentum and Angular Momentum in General Relativity and Some of Their Applications. Found Phys 37, 341–365 (2007). https://doi.org/10.1007/s10701-007-9107-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9107-y

Keywords

Pacs

Navigation