Skip to main content
Log in

Quantum Information as a General Paradigm

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Quantum–mechanical systems may be understood in terms of information. When they interact, they modify the information they carry or represent in two, and only two, ways: by selecting a part of the initial amount of (potential) information and by sharing information with other systems. As a consequence, quantum systems are informationally shielded. These features are shown to be general features of nature. In particular, it is shown that matter arises from quantum–mechanical processes through the constitution of larger ensembles that share some information while living organisms make use of a special form of information selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Wheeler (1990) “Information, Physics, Quantum: The search for Links” W. H. Zurek (Eds) Complexity, Entropy and the Physics of Information Addison-Wesley Redwood City 3–28

    Google Scholar 

  2. D. Deutsch (1983) ArticleTitle“Uncertainty in quantum mechanics” Phys. Rev. Lett. 50 631–633 Occurrence Handle10.1103/PhysRevLett.50.631

    Article  Google Scholar 

  3. K. Kraus (1987) ArticleTitle“Complementary observables and uncertainty relations” Phys. Rev. D 35 3070–3075 Occurrence Handle10.1103/PhysRevD.35.3070

    Article  Google Scholar 

  4. D. Deutsch (1985) ArticleTitle“Quantum theory, the church-turing principle and the universal quantum computer” Proc. R. Soc. Lond. A 400 97–117

    Google Scholar 

  5. C.H. Bennett (1995) ArticleTitle“Quantum information and computation” Phys. Today 48 24–30

    Google Scholar 

  6. E. P. Wigner (1961) “Remarks on the Mind-Body Question” I. J. Good (Eds) The Scientist Speculates Heinemann London 284–302

    Google Scholar 

  7. E. P. Wigner (1963) ArticleTitle“The problem of measurement” Am. J. Phys. 31 6–15

    Google Scholar 

  8. B. C. Fraassen Particlevan (1991) Quantum Mechanics. An Empiricist View Clarendon Oxford

    Google Scholar 

  9. W. H. Zurek (1981) ArticleTitle“Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?” Phys. Rev. D 24 1516–1525 Occurrence Handle10.1103/PhysRevD.24.1516

    Article  Google Scholar 

  10. W. H. Zurek (1982) ArticleTitle“Environment–induced superselection rules” Phys. Rev. D 26 1862–1880 Occurrence Handle10.1103/PhysRevD.26.1862

    Article  Google Scholar 

  11. G. Auletta G. Tarozzi (2004) ArticleTitle“Wavelike correlations versus path detection: Another form of complementarity” Found. Phys. Lett. 17 889–895 Occurrence Handle10.1023/B:FOPL.0000013006.73220.5b

    Article  Google Scholar 

  12. A. C. Elitzur L. Vaidman (1993) ArticleTitle“Quantum mechanical interaction–free measurements” Found. Phys. 23 987–997 Occurrence Handle10.1007/BF00736012

    Article  Google Scholar 

  13. S. M. Barnett S. J. D. Phoenix (1989) ArticleTitle“Entropy as a measure of quantum optical correlation” Phys. Rev. A 40 2404–2409 Occurrence Handle10.1103/PhysRevA.40.2404 Occurrence Handle1:CAS:528:DyaL1MXlvVeiurc%3D Occurrence Handle9902420

    Article  CAS  PubMed  Google Scholar 

  14. E. Joos H. D. Zeh (1985) ArticleTitle“The emergence of classical properties through interaction with the environment” Z. Phys. B 59 223–243 Occurrence Handle10.1007/BF01725541

    Article  Google Scholar 

  15. H. M. Partovi (1989) ArticleTitle“Irreversibility, reduction and entropy increase in quantum measurements” Phys. Rev. 137A 445–450

    Google Scholar 

  16. R. Landauer (1961) ArticleTitle“Irreversibility and heat generation in the computing process” IBM J. Res. Dev. 5 183–191

    Google Scholar 

  17. R. Landauer (1996) ArticleTitle“Minimal energy requirements in communication” Science 272 1914–1919 Occurrence Handle1:CAS:528:DyaK28XjvVOis7w%3D Occurrence Handle8662490 Occurrence HandleMR1395347

    CAS  PubMed  MathSciNet  Google Scholar 

  18. C. H. Bennett (1973) ArticleTitle“Logical reversibility of computation” IBM J. Res. Dev. 17 525–532

    Google Scholar 

  19. C. H. Bennett (1982) ArticleTitle“The thermodynamics of computation: A review” Int. J. Theor. Phys. 21 905–940 Occurrence Handle1:CAS:528:DyaL38Xmt1Citbg%3D

    CAS  Google Scholar 

  20. C. H. Bennett S. J. Wiesner (1992) ArticleTitle“Communication via one- and two-particle operators on EPR States” Phys. Rev. Lett. 69 2881–2884 Occurrence Handle10.1103/PhysRevLett.69.2881 Occurrence Handle10046665

    Article  PubMed  Google Scholar 

  21. C. H. Bennett G. Brassard C. Crepeau R. Jozsa A. Peres W. K. Wootters (1993) ArticleTitle“Teleporting an unknown quantum state via dual classical and EPR channels” Phys. Rev. Lett. 70 1895–1899 Occurrence Handle10.1103/PhysRevLett.70.1895 Occurrence Handle10053414

    Article  PubMed  Google Scholar 

  22. L. L. Gatlin (1972) Information Theory and the living System Columbia University Press New York

    Google Scholar 

  23. S. Frautschi (1982) ArticleTitle“Entropy in an expanding Universe” Science 217 593–599

    Google Scholar 

  24. D. Layzer (1977) ArticleTitle“Information in cosmology, physics, and biology” Int. J. Quant. Chem. 12 IssueIDSupp. 1 185–195

    Google Scholar 

  25. V. Vedral M. B. Plenio M. A. Rippin P. L. Knight (1997) ArticleTitle“Quantifying entanglement” Phys. Rev. Lett. 78 2275–2279 Occurrence Handle10.1103/PhysRevLett.78.2275 Occurrence Handle1:CAS:528:DyaK2sXitVOqsrw%3D

    Article  CAS  Google Scholar 

  26. C. Adami N. J. Cerf (2000) ArticleTitle“Physical complexity of symbolic sequences” Physica D 137 62–69

    Google Scholar 

  27. G. M. Edelman (1988) Topobiology: An Introduction to Molecular Biology Basic Books New York

    Google Scholar 

  28. M. Barbieri (2003) The organic Codes: An Introduction to Semantic Biology Cambridge University Press Cambridge

    Google Scholar 

  29. C. H. Waddington (1957) The Strategy of the Genes Allen and Unwin London

    Google Scholar 

  30. W. Reik W. Dean (2002) ArticleTitle“Back to the beginning” Nature 420 127 Occurrence Handle10.1038/420127a Occurrence Handle1:CAS:528:DC%2BD38Xos1Ggu7Y%3D Occurrence Handle12432368

    Article  CAS  PubMed  Google Scholar 

  31. C. H. Waddington “A catastrophe theory of evolution,” Ann. N.Y. Ac. Sci. (1974), rep. in [13, pp. 253–266]

  32. T. W. Deacon (1997) The Symbolic Species: The Co–Evolution of Language and the Brain W. W. Norton New York

    Google Scholar 

  33. H.-G. Rammensee (2002) ArticleTitle“Survival of the fitters” Nature 419 443 Occurrence Handle10.1038/419443a Occurrence Handle1:CAS:528:DC%2BD38XnsFaju7o%3D Occurrence Handle12368840

    Article  CAS  PubMed  Google Scholar 

  34. J. P. Hailman (1977) Optical Signals Indiana University Press Bloomington

    Google Scholar 

  35. J. Ford (1989, 1993) “What is chaos, that we should be mindful of it?” P. C. W. Davies (Eds) The New Physics Cambridge University Press Cambridge 348–372

    Google Scholar 

  36. I. Glynn (1999) An Anatomy of Thought: The Origin and Machinery of the Mind Oxford University Press Oxford

    Google Scholar 

  37. T. Kenet D. Bibitchkov M. Tsodyks A. Grinvald (2003) ArticleTitle“Spontaneously emerging cortical representations of visual attributes” Nature 425 954–956 Occurrence Handle10.1038/nature02078 Occurrence Handle1:CAS:528:DC%2BD3sXosVOht7c%3D Occurrence Handle14586468

    Article  CAS  PubMed  Google Scholar 

  38. G. Auletta (2002) ArticleTitle“Is representation characterized by intrinsicity and causality?” Intellectica 35 83–113

    Google Scholar 

  39. S. A. Kauffman (1993) The Origins of Order Oxford University Press New York-Oxford

    Google Scholar 

  40. D. J. Depew B. H. Weber (1995) Darwinism evolving: Systems Dynamics and the Genealogy of Natural Selection MIT Press Cambridge, MA

    Google Scholar 

  41. E. Schrödinger (1944) What is Life? Cambridge University Press Cambridge

    Google Scholar 

  42. S. N. Salthe (1993) Development and Evolution: Complexity and Change in Biology MIT Press Cambridge, MA

    Google Scholar 

  43. D. Brooks E. Wiley (1986) Evolution as Entropy 2nd edn. University of Chicago Press Chicago

    Google Scholar 

  44. C. H. Waddington “Genetic assimilation,” Adv. Genet. 10, 257–290 (1961); rep. in [13, 59–92].

  45. C. H. Waddington, “The human evolutionary system,” in Darwinism and the Study of Society M. Banton ed. (Tavistock Publications, London, 1961), 63–81; rep. in [13, pp. 281–299].

  46. J. Hoffmeyer (1996) Signs of Meaning in the Universe Indiana University Press Bloomington

    Google Scholar 

  47. R. Swenson (1989) ArticleTitleEmergent attractors and the law of maximum entropy production” Syst. Res. 6 187–197

    Google Scholar 

  48. R. Swenson (1992) ArticleTitle“Autocatakinetics, Yes – Autopoiesis, No: Steps toward a unified theory of evolutionary ordering” Int. J. Gen. Syst. Res. 21 207–228

    Google Scholar 

  49. C. H. Waddington (1959) “Evolutionary Adaptation,” Evolution after Darwin University of Chicago Press Chicago 381–402

    Google Scholar 

  50. C. H. Waddington (1968) “Does Evolution depend on random Search?” C. H. Waddington (Eds) Towards a Theoretical Biology 1: Prolegomena Edinburgh University Press Edinburgh 111–119

    Google Scholar 

  51. C. H. Waddington (1975) Evolution of Evolutionist Cornell University Press New York

    Google Scholar 

  52. S. M. Barnett S. J. D. Phoenix (1991) ArticleTitle“Information theory, squeezing, and state correlations” Phys. Rev. A 44 535–545 Occurrence Handle10.1103/PhysRevA.44.535 Occurrence Handle9905704

    Article  PubMed  Google Scholar 

  53. J. Maynard Smith and E. Szathmáry, The major Transitions in Evolution (Freeman/Spektrum, Oxford, 1995; Oxford University Press, Oxford, 1997, 2002).

  54. J. Maynard Smith E. Szathmáry (1999) The Origins of Life: From the Birth of Life to the Origins of Language Oxford University Press Oxford

    Google Scholar 

  55. R. R. Llinás (2001) I of the Vortex: From Neurons to Self MIT Press Cambridge, MA

    Google Scholar 

  56. G. Auletta “Quantum Information and inferential reasoning,” submitted to Found. Phys.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Auletta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auletta, G. Quantum Information as a General Paradigm. Found Phys 35, 787–815 (2005). https://doi.org/10.1007/s10701-005-4565-6

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-4565-6

Keywords

Navigation