Skip to main content
Log in

A Theory of Scientific Study

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

This paper presents a theory of scientific study which is regarded as a social learning process of (working) scientific knowledge creation, revision, application, monitoring (e.g., confirmation) and dissemination (e.g., publication) with the aim of securing good quality, general, objective, testable and complete scientific knowledge of the domain. The theory stipulates the aim of scientific study that forms the basis of its principles. It also makes seven assumptions about scientific study and defines the major participating entities (i.e., scientists, scientific knowledge and enabling technical knowledge). It extends a recent process model of scientific study into a detailed interaction model as this process model already addresses many issues of philosophy of science. The detailed interaction model of scientific study provides a common template of scientific activities for developing logical (data) models in different scientific disciplines (for physical database implementation), or alternatively for developing (domain) ontologies of different scientific disciplines. Differences between research and scientific studies are discussed, and a possible way to develop a scientific theory of scientific study is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aerts, D., Brokekaert, J., & Smets, S. (1999). Inconsistencies in constituent theories or world views: Quantum mechanical examples. Foundations of Science, 3(2), 313–340.

    Article  Google Scholar 

  • Aerts, D., & Rohrlich, F. (1998). Reduction. Foundations of Science, 3(1), 27–35.

    Article  Google Scholar 

  • Brodaric, B., & Gahegan, M. (2006). Representing geoscientific knowledge in cyberinfrastructure: Challenges, approaches and implementations. In A. K. Sinha (Ed.), Geoinformatics: Data to knowledge (pp. 1–20). Colorado: Geological Society of America.

    Chapter  Google Scholar 

  • Cleland, C. E. (2001). Historical science, experimental science and the scientific method. Geology, 29(11), 987–990.

    Article  Google Scholar 

  • Damper, R. I. (2006). Thought experiments can be harmful. The Pantaneto Forum, 22.

  • De Roure, D., Jennings, N. R., & Shadbolt, N. R. (2003). The semantic grid: A future e-science infrastructure. In F. Berman, G. Fox, & T. Hey (Eds.), Grid computing—Making the global infrastructure a reality (pp. 437–470). England: Wiley.

    Google Scholar 

  • Dieks, D., & De Regt, H. W. (1998). Reduction and understanding. Foundations of Science, 3(1), 173–188.

    Article  Google Scholar 

  • Farrell, R. P., & Hooker, C. A. (2009). Error, error-statistics and self-directed anticipative learning. Foundations of Science, 14(4), 249–271.

    Article  Google Scholar 

  • Frankfort-Nachmias, C., & Nachmias, D. (1996). Research methods in the social sciences. London: Arnold Press.

    Google Scholar 

  • Gauch, H. C. (2003). Scientific method in practice. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hars, A. (2001). Designing scientific knowledge infrastructures: The contribution of epistemology. Information Systems Frontiers, 3(1), 63–71.

    Article  Google Scholar 

  • Hartmann, S. (1996). The world as a process: Simulations in the natural and social sciences. In R. Hegselmann, U. Mueller, & K. G. Troitzsch (Eds.), Modeling and simulation in the social sciences from the philosophy of science point of view (pp. 77–100). London: Kluwer.

    Chapter  Google Scholar 

  • Hennig, C. (2010). Mathematical models and reality: A constructivist perspective. Foundations of Science, 15(1), 29–48.

    Article  Google Scholar 

  • Hoffer, J. A., Prescott, M. B., & McFadden, F. R. (2002). Modern database management. Englewood Cliffs, NJ: Prentice-Hall International.

    Google Scholar 

  • Humphreys, P. (1995). Computational empiricism. Foundations of Science, 1(1), 119–130.

    Article  Google Scholar 

  • Kingston, J. (2002). Merging top level ontologies for scientific knowledge management. In Proceedings of the AAAI workshop on ontologies and the semantic web, Edmonton, Canada.

  • Kosso, P. (2007). Scientific understanding. Foundations of Science, 12(2), 173–188.

    Article  Google Scholar 

  • Lakatos, I. (1977). The methodology of scientific research programmes. J. Worrall & G. Currie (Eds.). New York: Cambridge University Press.

  • Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Liu, C. (2004). Laws and models in a theory of idealization. Syntheses, 138(3), 363–385.

    Article  Google Scholar 

  • Ludäscher, M., Lin, K., Bowers, S., Jaeger-Frank, E., Brodaric, B., & Baru, C. (2006). Managing scientific data: From data integration to scientific workflows. In A. K. Sinha (Ed.), Geoinformatics: Data to knowledge (pp. 109–130). Boulder, CO: Geological Society of America.

    Chapter  Google Scholar 

  • Luk, R. W. P. (2010). Understanding scientific study via process modeling. Foundations of Science, 15(1), 49–78.

    Article  Google Scholar 

  • Magnani, L. (1999). Withdrawing unfalsifiable hypothesis. Foundations of Science, 4(2), 257–268.

    Article  Google Scholar 

  • Marquis, J.-P. (1991). Approximations and truth space. Journal of Philosophical Logic, 20(4), 375–401.

    Article  Google Scholar 

  • McMullin, E. (1985). Galilean idealization. Studies in the History and Philosophy of Science, 16, 247–273.

    Article  Google Scholar 

  • Meyer, W. J. (1985). Concepts of mathematical modeling. New York: McGraw Hill.

    Google Scholar 

  • Nagel, T. (1974). What is it like to be a bat? Philosophical Review, 83(4), 435–450.

    Article  Google Scholar 

  • Niiniluoto, I. (1987). Truthlikeness. Dordrecht: Reidel.

    Book  Google Scholar 

  • Nowak, L. (1972). Laws of science, theories, measurement. Philosophy of Science, 39(4), 533–548.

    Article  Google Scholar 

  • Pierce, C. S. (1878). Deduction, induction and abduction. Popular Science Monthly, 13, 470–782.

    Google Scholar 

  • Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson.

  • Pratten, S. (2007). The scope of ontological theorising. Foundations of Science, 12(3), 235–256.

    Article  Google Scholar 

  • Rainville, S., Thompson, J. K., Myers, E. G., Brown, J. M., Dewey, M. S., Kessler, E. G, Jr, et al. (2005). A direct test of E = mc 2. Nature, 438(22), 1096–1097.

    Article  Google Scholar 

  • Regopoulos, M. (1966). The principle of causation as a basis of scientific method. Management Science, 12(8), C135–C139.

    Article  Google Scholar 

  • Saracevic, T., & Kantor, P. B. (1997). Studying the value of library and information services. Part II. Methodology and taxonomy. Journal of the American Society for Information Science and Technology, 48(6), 543–563.

    Article  Google Scholar 

  • Silberschatz, A., Korth, H. F., & Sudarshan, S. (2005). Database system concepts (5th ed.). New York: McGraw Hill.

    Google Scholar 

  • Soldatova, L. N., & King, R. D. (2006). An ontology of scientific experiments. Journal of the Royal Society, Interface, 3(11), 795–803.

    Article  Google Scholar 

  • Weber, E. (2004). Rationality in the discovery of empirical law. Foundations of Science, 4(3), 356–368.

    Google Scholar 

  • Weston, T. (1987). Approximate truth. Journal of Philosophical Logic, 16(2), 203–227.

    Article  Google Scholar 

  • Wiezenbaum, J. (1966). ELIZA—A computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36–45.

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Edward Dang and the anonymous reviewers for the constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. P. Luk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luk, R.W.P. A Theory of Scientific Study. Found Sci 22, 11–38 (2017). https://doi.org/10.1007/s10699-015-9435-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-015-9435-x

Keywords

Navigation