Skip to main content
Log in

Understanding Natural Science Based on Abductive Inference: Continental Drift

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

This study aims to understand scientific inference for the evolutionary procedure of Continental Drift based on abductive inference, which is important for creative inference and scientific discovery during problem solving. We present the following two research problems: (1) we suggest a scientific inference procedure as well as various strategies and a criterion for choosing hypotheses over other competing or previous hypotheses; aspects of this procedure include puzzling observation, abduction, retroduction, updating, deduction, induction, and recycle; and (2) we analyze the “theory of continental drift” discovery, called the Earth science revolution, using our multistage inference procedure. Wegener’s Continental Drift hypothesis had an impact comparable to the revolution caused by Darwin’s theory of evolution in biology. Finally, the suggested inquiry inference model can provide us with a more consistent view of science and promote a deeper understanding of scientific concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Gabbay and Woods (2005 p. 120) later applied it to non-monotonic reasoning as instrumental value. Thagard (2010) recently argued that a term such as “gabuction” could be used be used to cover the generalized notion of abduction.

References

  • Bowler, P. J., & Morus, I. J. (2005). Making modern science: A historical survey. Chicago: Chicago University Press.

    Book  Google Scholar 

  • Brewka, G., Dix, J., & Konolige, K. (1997). Nonmonotonic reasoning: An overview. Califonia: Center for the Study of Language and Information Leland Stanford Junior University.

    Google Scholar 

  • Chiasson, P. (2005). Abduction as an aspect of retroduction. Semiotica, 153(1/4), 223–242.

    Google Scholar 

  • Fischler, M. A., & Firschein, O. (1987). Intelligence: The eye, the brain, and the computer. Reading, MA: Addison-Wesley Publishing Company, Inc.

  • Fortey, R. (2004). The Earth: An intimate history. London: David Godwin Associates.

    Google Scholar 

  • Franknoi, A., Morrison, D., & Wolff, S. (1997). Voyages through the universe. New York: Saunders College Publishing.

    Google Scholar 

  • Franknoi, A., Morrison, D., & Wolff, S. (2004). Voyages Through the Universe (3rd ed.). New York: Saunders College Publishing.

  • Frankel, H. (1985). The continental drift debate. In A. Caplan & H. T. Englehart (Eds.), Revolution of scientific controversies: Theoretical perspectives on closure (pp. 312–373). Cambridge: Cambridge University Press.

    Google Scholar 

  • Fronk, R. H., & Knight, L. B. (1994). Earth science. New York: Holt, Rinehart and Winston, Inc.

  • Flash, P. A., & Kakas, A. C. (2000). Abductive and inductive reasoning: Background and issues. In P. A. Flash & A. C. Kakas (Eds.), Abduction and induction: Essays on their relation and integration (pp. 1–27). Dordrecht: Kluwer.

    Google Scholar 

  • Gabbay, D. M., & Woods J. (2005). The reach of abduction insight and trial. A Practical Logic of Cognitive Systems, Vol. 2. Amsterdam: Elsevier, North-Holland.

  • Garrison, T. (2002). Oceanography: An introduction (4th ed.). Belmont, CA: Wadsworth/Thomson Learning.

    Google Scholar 

  • Giere, R. N. (1997). Understanding scientific reasoning. In N. Ronald Giere (Ed.), (4th ed.) New York: Harcourt Brace College Publishers.

  • Hanson, N. R. (1958). Patterns of discovery. London: Cambridge University Press.

    Google Scholar 

  • Hintikka, J. (1999). Is logic the key to all good reasoning? In J. Hintikka (Ed.), Inquiry as inquiry: A logic of scientific discovery, Jaakko Hintikka selected papers (Vol. 5). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Josephson, J. R., & Josephson, S. G. (1996). Abductive inference: Computation, philosophy, technology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kapitan, T. (1997). Peirce and structure of abductive inference. In: Hauser et al. (Eds.), Studies in the logic of Charles Sanders Peirce (pp. 477–496). Bloomington and Indianapolis: Indiana University Press.

  • Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge (pp. 91–195). Cambridge: Cambridge University Press.

  • Lawson, A. E. (2010). Basic inferences of scientific reasoning, argumentation, and discovery. Science Education, 94, 336–364.

    Google Scholar 

  • Laudan, L. (1977). Progress and its problems: Towards a theory of scientific growth. London: Routledge & Kegan Paul.

    Google Scholar 

  • Le Grand, H. (1988). Drifting continents and shifting theories. Cambridge: Cambridge University Press.

    Google Scholar 

  • Losee, J. (2001). A historical Introduction to the philosophy of science (4th ed.). New York: Oxford University Press Inc.

    Google Scholar 

  • Lutgens, F. K., & Tarbuck, E. J. (1998). Essentials of geology (6th ed.). New Jersey: Prentice Hall.

    Google Scholar 

  • McLaughlin, R. (1982). Invention and induction: Laudan, Simon, and the logic of discovery. Philosophy of Science, 49, 209.

    Article  Google Scholar 

  • McMenamin, M. A. S. (2007). Science 101: Geology (1st ed.). Irvington, NY: Harper Collins Publishers.

    Google Scholar 

  • Magnani, L. (1988). Epistémolgie de I’ invention scientifique. Communication and Cognition, 21, 273–291.

    Google Scholar 

  • Magnani, L. (1999). Model-based creative abduction. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 219–238). New York: Kluwer/ Plenum Publishers.

    Chapter  Google Scholar 

  • Magnani, L. (2001). Abduction, reason, and science. Processes of discovery and explanation. New York: Kluwer /Plenum Publishers.

    Book  Google Scholar 

  • Magnani, L. (2009). Abductive cognition: The epistemological and eco-cognitive dimensions of hypothetical reasoning. Berlin/Heidelberg: Springer.

    Book  Google Scholar 

  • Niiniluoto, I. (1999). Defending abduction. Philosophy of science, 66 (Proceedings), S436–S451.

  • Oh, J. Y. (2010). Defending problems with Peirce’s concept of abduction. Journal of Korean Philosophical Society, 113, 215–255.

    Google Scholar 

  • Oh, J. Y. (2012). Understanding scientific inference In the natural sciences based on abductive inference strategies. In L. Magnani & P. Li (Eds.), Philosophy and cognitive science: Western & eastern studies (Sapere 2) (pp. 221–237). New York: Springer.

    Chapter  Google Scholar 

  • Oreskes, N. (1999). The rejection of continental drift: Theory and method in American Earth science. New York: Oxford University Press.

    Google Scholar 

  • Paavola, S. (2005). Peircean abduction: Instinct or inference. Semiotica, 153–1(4), 131–154.

    Google Scholar 

  • Paixăo, I., Calado, S., Ferreira, S., Alves, V., & Moras, A. M. (2004). Continental drift: A discussion strategy for secondary school. Science & Education, 13, 201–221.

    Article  Google Scholar 

  • Park, J. H. (2005). Peirce’s abduction and method of hypothesis. Pan-Korean Philosophy, 37, 65–85.

    Google Scholar 

  • Peirce, C. S. (1931–1958). Collected Papers of Charles Sanders Peirce, vols. 1–6, C. Hartshorne, and P. Weiss(Ed.); vols. 7–8, A. W. Burks, (Eds.), Cambridge: Harvard University Press.

  • Peirce, C. S. (1985). Historical perspectives on Peirce logic of science. In C. Eisele (Ed.), A history of science, 2 vols. Berlin: Mouton Publishers.

  • Peng, Y., & Reggia, J. A. (1990). Abductive inference models for diagnostic problem-solving. New York: Springer.

    Book  Google Scholar 

  • Psillos, S. (2000). Abduction: Between conceptual richness and computational complexity. In P. A. Flash & A. C. Kakas (Eds.), Abduction and induction: Essays on their relation and integration (pp. 59–76). Dordrecht: Kluwer.

  • Rescher, N. (1978). Peirce’s philosophy of science. Notre Dame, IN: University of Notre Dame Press.

    Google Scholar 

  • Salmon, W. C. (1967). The foundations of scientific inference. Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Salmon, M. H. (1995). Introduction to logic and critical thinking (3rd ed.). Worth, TX: Harcourt Brace Fort.

    Google Scholar 

  • Šešelija, D., & Weber, E. (2012). Rationality and irrationality in the history of continental drift: Was the hypothesis of continental drift worthy of pursuit? Studies in History and Philosophy of Science, 43(2), 147–159.

    Google Scholar 

  • Šešelija, D., & Stra\(\beta \)er, C. Epistemic justification in the context of pursuit: A Coherentist approach. Synthese (Accepted for publication).

  • Stewart, J. A. (1990). Drifting continents and colliding paradigms: Perspectives in the geoscience revolution. Bloomington: Indiana University Press.

    Google Scholar 

  • Skinner, B. J., & Porter, S. C. (2000). The dynamic earth: An introduction to physical geology (4th ed.). New York: Wiley.

    Google Scholar 

  • Thagard, P. (1988). Computational philosophy of science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Thagard, P. (2010). Review of L. Magnani: Abductive cognition: The epistemological and eco-cognitive dimensions of hypothetical reasoning. Berlin: Springer (2009). Cognitive Systems Monographs. Mind and Society, 9(1), 111–112.

  • Trigg, G. I. (Ed.). (1991). Encyclopedia of applied physics, Vol. 2. New York: VCH Publishers, Inc.

  • von Engelhardt, W., & Zimmermann, J. (1982). Theory of earth science (trans: Fischer, L.). Cambridge, UK.: Cambridge University Press.

  • Walton, D. (2004). Abductive reasoning. Tuscaloosa: The University of Alabama Press.

    Google Scholar 

  • Whewell, W. (1847). The philosophy of the inductive sciences. London: John W. Parker.

    Google Scholar 

  • Wicander, R., & Monroe, J. S. (2006). Essential of geology (4th ed.). CA: Thomson Learning, Inc.

    Google Scholar 

  • Wuisman, J. J. J. M. (2005). The logic of scientific discovery in critical realist social scientific research. Journal of Critical Realism, 4(2), 366–394.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Young Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, JY. Understanding Natural Science Based on Abductive Inference: Continental Drift. Found Sci 19, 153–174 (2014). https://doi.org/10.1007/s10699-013-9322-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-013-9322-2

Keywords

Navigation