Skip to main content
Log in

Nanotechnology: from the ancient time to nowadays

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

While nanosciences and nanotechnologies appear as new concepts developed at the end of the twentieth century, we show that metallic nanoparticles have already been used since ancient times, in particular as colorant in the glass and ceramic industries. Moreover, a lot of natural nanomaterials are also present in the mineral, vegetal and animal worlds. Nevertheless, the breakthrough of nanotechnology has been permitted in the past few decades by the advent of apparatus allowing the manipulation and observation of the nanoworld. Indeed, nowadays, nanomaterials and nanoparticles are used for many applications in our daily life, such as in the fields of electronics, catalysis, optics, biology, and medicine. This article presents an overview about nanotechnologies, with applications from ancient times till the present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. A tessera (plural: tesserae) is an individual tile (a manufactured piece of hard-wearing material such as ceramic), usually formed in the shape of a cube, used in creating a mosaic.

References

  • Barber, D.J., Freestone, I.C.: An investigation of the origin of the colour of the Lycurgus Cup by analytical transmission electron microscopy. Archaeometry 32(1), 33–45 (1990)

    Article  Google Scholar 

  • Barthlott, W., Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)

    Article  Google Scholar 

  • Belloni, J.: The role of silver clusters in photography. C. R. Phys. 3, 381–390 (2002)

    Article  Google Scholar 

  • Bogue, R.: Biomimetic adhesives: a review of recent developments. Assembly Autom. 28(4), 282–288 (2008)

    Article  Google Scholar 

  • Boulenguez, J., Berthier, S., Leroy, F.: Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly. Appl. Phys. A 106, 1005–1011 (2012)

    Article  Google Scholar 

  • Bouville, F., Maire, E., Meille, S., Van de Moortèle, B., Stevenson, A.J., Deville, S.: Strong, tough and brittle bioinspired ceramics from brittle constituents. Nat. Mater. 13, 508–524 (2014)

    Article  Google Scholar 

  • Brill, R.H.: The chemistry of the Lycurgus Cup. Proc. 7th Int. Cong. Glass 2(223), 1–13 (1965)

    Google Scholar 

  • Brill, R.H., Cahill, N.D.: A red opaque glass from Sardis and some thoughts on red opaques in general. J. Glass Stud. 30, 16–27 (1988)

    Google Scholar 

  • Bruet, B.J.F., Qia, H.J., Boyce, M.C., Panas, R., Tai, K., Frick, L., Ortiz, C.: Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 20, 2400–2419 (2005)

    Article  Google Scholar 

  • Burch, R.: Knowledge and know-how in emission control for mobile applications. Catal. Rev. Sci. Eng. 46, 271–333 (2004)

    Article  Google Scholar 

  • Cassaignon, S., Colbeau-Justin, C., Duruphty, O.: Titanium dioxide in photocatalysis. In: Brayner, R., Fievet, F., Coradin, T. (eds.) Nanomaterials: A Danger or a Promise?, pp. 153–187. Springer, Berlin (2012)

    Google Scholar 

  • Chirnside, R.C.: The Rothschild Lycurgus Cup: an analytical investigation. Proc. 7th Int. Cong. Glass 2(222), 1–6 (1965)

    Google Scholar 

  • Colomban, P.: The use of metal nanoparticles to produce yellow, red and iridescent colour, from Bronze age to present times in lustre pottery any glass: solid state chemistry, spectroscopy and nanostructure. J. Nano Res. 8, 109–132 (2009)

    Article  Google Scholar 

  • Daniel, M.-C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Article  Google Scholar 

  • Dargaud, O., Stievano, L., Faurel, X.: A new procedure of red gold purples at the “Manufacture Nationale de Céramiques de Sèvres”. Gold Bull. 40(4), 283–290 (2007)

    Article  Google Scholar 

  • Delcourt, M.O., Belloni, J.: Capture de précurseurs de l’hydrazine par les ions Cu+ au cours de la radiolyse de l’ammoniac liquide. Radiochem. Radioanal. Lett. 13, 329–338 (1973)

    Google Scholar 

  • Delgado, J., Vilarigues, M., Ruivo, A., Corregidor, V., da Silva, R.C., Alves, L.C.: Characterisation of medieval yellow silver stained glass from Convento de Cristo in Tomar, Portugal. Nucl. Instrum. Methods B 269, 2383–2388 (2011)

    Article  Google Scholar 

  • Faraday, M.: Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145–181 (1857)

    Article  Google Scholar 

  • Feynman, R.P.: There’s plenty of room at the bottom. Eng. Sci. 23(5), 22–36 (1960)

    Google Scholar 

  • Freestone, I., Meeks, N., Sax, M., Higgitt, C.: The Lycurgus Cup—a Roman nanotechnology. Gold Bull. 40(4), 270–277 (2007)

    Article  Google Scholar 

  • Fujishima, A., Zhang, X., Tryk, D.A.: Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int. J. Hydrog. Energy 32, 2664–2672 (2007)

    Article  Google Scholar 

  • Ghosh, S., Kouamé, N.A., Ramos, L., Remita, S., Dazzi, A., Deniset-Besseau, A., Beaunier, P., Goubard, F., Aubert P.-H., Remita, H.: Conducting polymer nanostructures for photocatalysis under visible light. Nat. Mater. 14, 505–511 (2015)

    Article  Google Scholar 

  • Haberland, H. (ed.): Clusters of Atoms and Molecules. Springer, Berlin (1994)

    Google Scholar 

  • Hainfeld, J.F., Dilmanian, F.A., Zhong, Z., Slatkin, D.N., Kalef-Ezra, J.A., Smilowitz, H.M.: Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys. Med. Biol. 55, 3045–3059 (2010)

    Article  Google Scholar 

  • Hainfeld, J.F., Slatkin, D.N., Smilowitz, H.M.: The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 49, N309–N315 (2004)

    Article  Google Scholar 

  • Harisinghani, M.G., Barentsz, J., Hahn, P.F., Deserno, W.M., Tabatabaei, S., Hulsbergen van de Kaa, C., de la Rosette, J., Weissleder, R.: Noninvasive detection of clinically occult lymph-node metastases in prostate. Cancer. New Eng. J. Med. 348, 2491–2499 (2003)

    Article  Google Scholar 

  • Haruta, M., Kobayashi, T., Sano, H., Yamada, N.: Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 & °C. Chem. Lett. 16, 405–408 (1987)

    Article  Google Scholar 

  • Hashmi, A.S.K., Hutchings, G.J.: Gold catalysis. Angew. Chem. Int. Ed. 45, 7896–7936 (2006)

    Article  Google Scholar 

  • Henglein, A.: The reactivity of silver atoms in aqueous solutions (a γ-radiolysis study). Ber. Bunsenges. Phys. Chem. 81, 556–561 (1977)

    Article  Google Scholar 

  • Herold, D.M., Das, I.J., Stobbe, C.C., Iyer, R.V., Chapman, J.D.: Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int. J. Radiat. Biol. 76, 1357–1364 (2000)

    Article  Google Scholar 

  • Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Price, R.E., Hazle, J.D., Halas, N.J., West, J.L.: Nanoshell-mediated near infrared thermal therapy of tumors under MR guidance. PNAS 100, 13549–13554 (2003)

    Article  Google Scholar 

  • Huang, X., El-Sayed, I.H., Qian, W., El Sayed, M.A.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006)

    Article  Google Scholar 

  • Hunt, L.B.: The true story of Purple of Cassius. Gold Bull. 9(4), 134–139 (1976)

    Article  Google Scholar 

  • Jain, S., Coulter, J.A., Hounsell, A.R., Butterworth, K.T., McMahon, S.J., Hyland, W.B., Muir, M.F., Dickson, G.R., Prise, K.M., Currell, F.J., O’Sullivan, J.M., Hirst, D.G.: Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int. J. Radiat. Oncol. Biol. Phys. 79, 531–539 (2011)

    Article  Google Scholar 

  • José-Yacamán, M., Rendón, L., Arenas, J., Serra Puche, M.C.: Maya blue paint: an ancient nanostructured material. Science 273, 223–225 (1996)

    Article  Google Scholar 

  • Karmakar, S., Kumar, S., Rinaldi, R., Maruccio, G.: Nano-electronics and spintronics with nanoparticles. J. Phys: Conf. Ser. 292(012002), 1–15 (2011)

    Google Scholar 

  • Kubo, R.: Electronic properties of metallic fine particles I. J. Phys. Soc. Jpn. 17, 975–986 (1962)

    Article  Google Scholar 

  • Liu, H.S., Song, C.J., Zhang, L., Zhang, J.J., Wang, H.J., Wilkinson, D.P.: A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 155, 95–110 (2006)

    Article  Google Scholar 

  • Liu, Y., Shigley, J.E., Hurwit, K.N.: Iridescence color of a shell of the mollusk Pinctada Margaritifera caused by diffraction. Opt. Express 4(5), 177–182 (1999)

    Article  Google Scholar 

  • Louis, C.: Gold nanoparticles in the past: before the nanotechnology era. In: Louis, C., Pluchery, O. (eds.) Gold Nanoparticles for Physics, Chemistry and Biology. Imperial College Press, World Scientific Publishing, London (2012)

    Chapter  Google Scholar 

  • McMahon, S.J., Prise, K.M., Currell, F.J.: Comment on ‘Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location’. Phys. Med. Biol. 57, 287–290 (2012)

    Article  Google Scholar 

  • Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. Leipzig 25, 377–445 (1908)

    Article  Google Scholar 

  • Moret, R.: Nanomonde: des nanosciences aux nanotechnologies. CNRS Editions, Paris (2006)

    Google Scholar 

  • Morse, M.D.: Clusters of transition–metal atoms. Chem. Rev. 86, 1049–1109 (1986)

    Article  Google Scholar 

  • Mura, S., Couvreur, P.: Nanotheranostics for personalized medicine. Adv. Drug Deliv. Rev. 64, 1394–1416 (2012)

    Article  Google Scholar 

  • Niidome, T.: Development of functional gold nanorods for bioimaging and photothermal therapy. J. Phys. Conf. Ser. 232(012011), 1–6 (2010)

    Google Scholar 

  • Plattner, L.: Optical properties of the scales of Morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum. J. R. Soc. Interface 1, 49–59 (2004)

    Article  Google Scholar 

  • Porcel, E., Liehn, S., Remita, H., Usami, N., Kobayashi, K., Furusawa, Y., Le Sech, C., Lacombe, S.: Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 21(085103), 1–7 (2010)

    Google Scholar 

  • Reibold, M., Paufler, P., Levin, A.A., Kochmann, W., Pätzke, N., Meyer, D.C.: Carbon nanotubes in an ancient Damascus sabre. Nature 444, 286 (2006)

    Article  Google Scholar 

  • Roux, S., Tillement, O., Billotey, C., Coll, J.L., Duc, G.L., Marquette, C.A., Perriat, P.: Multifunctional nanoparticles: from the detection of biomolecules to the therapy. Int. J. Nanotechnol. 7, 781–801 (2010)

    Article  Google Scholar 

  • Rytwo, G.: Clay minerals as an Ancient nanotechnology: historical uses of clay organic interactions, and future possible perspectives. Macla 9, 15–17 (2008)

    Google Scholar 

  • Sanders, J.V.: Colour of precious opal. Nature 204, 1151–1153 (1964)

    Article  Google Scholar 

  • Schumacher, E.: Metal clusters: between atom and bulk. Chimia 42, 357–376 (1988)

    Google Scholar 

  • Snow, M.R., Pring, A.: The mineralogical microstructure of shells: Part 2. The iridescence colors of abalone shells. Am. Mineral. 90, 1705–1711 (2005)

    Article  Google Scholar 

  • Solga, A., Cerman, Z., Striffler, B.F., Spaeth, M., Barthlott, W.: The dream of staying clean: lotus and biomimetic surfaces. Bioinspir. Biomim. 2(4), 126–134 (2007)

    Article  Google Scholar 

  • Taniguchi, N.: On the basic concept of “nano-technology”. In: Proceedings of International Conference on Production Engineering. Tokyo, Part II, Japan Society of Precision Engineering (1974)

  • Thompson, D.: Michael Faraday’s recognition of ruby gold: the birth of modern nanotechnology. Gold Bull. 40(4), 267–269 (2007)

    Article  Google Scholar 

  • Verita, M., Santopadre, P.: Analysis of gold-colored ruby glass tesserae in Roman church mosaics of the fourth to 12th centuries. J. Glass Stud. 52, 11 (2010)

    Google Scholar 

  • Yavuz, C.T., Yu, W.W., Prakash, A., Falkner, J.C., Yean, S., Cong, L., Shipley, H.J., Kan, A., Tomson, M., Natelson, M., Colvin, V.L.: Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314, 964–967 (2006)

    Article  Google Scholar 

  • Zanella, R., Giorgio, S., Henry, C.R., Louis, C.: Alternative methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B. 106, 7634–7642 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hynd Remita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaming, D., Remita, H. Nanotechnology: from the ancient time to nowadays. Found Chem 17, 187–205 (2015). https://doi.org/10.1007/s10698-015-9235-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-015-9235-y

Keywords

Navigation